首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
 Homoeologous pairing at metaphase I was analysed in the standard-type, ph2b and ph1b hybrids of Triticum aestivum (AABBDD) and Aegilops speltoides (SS). Data from relative pairing affinities were used to predict homoeologous relationships of Ae. speltoides chromosomes to wheat. Chromosomes of both species, and their arms, were identified by C-banding. The Ae. speltoides genotype carried genes that induced a high level of homoeologous pairing in the three types of hybrids analyzed. All arms of the seven chromosomes of the S genome showed normal homoeologous pairing, which implies that no apparent chromosome rearrangements occurred in the evolution of Ae. speltoides relative to wheat. A pattern of preferential pairing of two types, A-D and B-S, confirmed that the S genome is very closely related to the B genome of wheat. Although this pairing pattern was also reported in hybrids of wheat with Ae. longissima and Ae. sharonensis, a different behaviour was found in group 5 chromosomes. In the hybrids of Ae. speltoides, chromosome 5B-5S pairing was much more frequent than 5D-5S, while these chromosome associations reached similar frequencies in the hybrids of Ae. longissima and Ae. sharonensis. These results are in agreement with the hypothesis that the B genome of wheat is derived from Ae. speltoides. Received: 8 January 1998 / Accepted: 4 February 1998  相似文献   

3.
Ma ZC  Wei YM  Yan ZH  Zheng YL 《Genetika》2007,43(11):1534-1541
To carry out the comparative analysis of alpha-gliadin genes on A genomes of diploid and polyploid wheats, 8 full-length alpha-gliadin genes, including 3 functional genes and 5 pseudogenes, were obtained from diploid wheats, among which 2, 2 and 4 alpha-gliadin genes were isolated from T. urartu, T. monococcum and T. boeoticum, respectively. The results indicated that higher number of alpha-gliadin pseudogenes have been present in diploid wheats before the formation of polyploid wheats. Amino acid sequence comparative analysis among 26 alpha-gliadin genes, including 16 functional genes and 10 pseudogenes, from diploid and polyploid wheats was conducted. The results indicated that all alpha-gliadins contained four coeliac toxic peptide sequences (i.e., PSQQ, QQQP, QQPY and QPYP). The polyglutamine domains are highly variable, and the second polyglutamine stretch is usually disrupted by the lysine or arginine residue at the fourth position. The unique domain I is the most conserved domain. There are 4 and 2 conserved cysteine residues in the unique domains I and II, respectively. Comparative analysis indicated that the functional alpha-gliadin genes from A genome are highly conserved, whereas the identity of pseudogenes in diploid wheats are higher than those in hexaploid wheats. Phylogenetic analysis indicated that all the analyzed functional alpha-gliadin genes could be clustered into two major groups, among which one group could be further divided into 5 subgroups. The origin of alpha-gliadin pseudogene and functional genes were also discussed.  相似文献   

4.
The S genome of Aegilops speltoides is closely related to the B and G genomes of polyploid wheats. However, little work has been reported on the genetic relationships between the S-genome and B-genome chromosomes of polyploid wheat. Here, we report the isolation of a set of disomic substitutions (DS) of S-genome chromosomes for the B-genome chromosomes and their effects on gametophytic and sporophytic development. Ae. speltoides chromosomes were identified by their distinct C-banding and fluorescence in situ hybridization patterns with the Ae. speltoides-derived clone pGc1R-1. Although no large structural differences between S-genome and B-genome chromosomes exist, significant differences in gametophytic compensation were observed for chromosomes 1S, 3S, 5S and 6S. Similarly, chromosomes 1S, 2S, 4S, 5S and 6S affected certain aspects of sporophytic development in relation to spike morphology, fertility and meiotic pairing. The DS5S(5B) had disturbed meiosis with univalents/multivalents and suffered chromosome elimination in the germ tissues leading to haploid spikes in 50% of the plants. The effect of the Ph1 gene on meiosis is well known, and these results provide evidence for the role of Ph1 in the maintenance of polyploid genome integrity. These and other data are discussed in relation to the structural and functional differentiation of S- and B-genome chromosomes and the practical utility of the stocks in wheat improvement.  相似文献   

5.
A total of 137 loci were mapped in Aegilops speltoides, the closest extant relative of the wheat B genome, using two F2 mapping populations and a set of wheat-Ae. speltoides disomic addition (DA) lines. Comparisons of Ae. speltoides genetic maps with those of Triticum monococcum indicated that Ae. speltoides conserved the gross chromosome structure observed across the tribe Triticeae. A putative inversion involving the short arm of chromosome 2 was detected in Ae. speltoides. A translocation between chromosomes 2 and 6, present in the wheat B genome, was absent. The ligustica/aucheri spike dimorphism behaved as allelic variation at a single locus, which was mapped in the centromeric region of chromosome 3. The genetic length of each chromosome arm was about 50 cM, irrespective of its physical length. Compared to T. monococcum genetic maps, recombination was virtually eliminated from the proximal 50–100 cM and was localized in short distal regions, which were often expanded compared to the T. monococcum maps. The wheat B genome and the genome of Ae. longissima, a close relative of Ae. speltoides, do not show the extreme localization of crossovers observed in Ae. speltoides.  相似文献   

6.
Triticum urartu, Aegilops speltoides and Ae. tauschii are respectively the immediate diploid sources, or their closest relatives, of the A, B and D genomes of polyploid wheats. Here we report the construction and characterization of arrayed large-insert libraries in a bacterial artificial chromosome (BAC) vector, one for each of these diploid species. The libraries are equivalent to 3.7, 5.4 and 4.1 of the T. urartu, Ae. speltoides, Ae. tauschii genomes, respectively. The predicted levels of genome coverage were confirmed by library hybridization with single-copy genes. The libraries were used to estimate the proportion of known repeated nucleotide sequences and gene content in each genome by BAC-end sequencing. Repeated sequence families previously detected in Triticeae accounted for 57, 61 and 57% of the T. urartu, Ae. speltoides and Ae. tauschii genomes, and coding regions accounted for 5.8, 4.5 and 4.8%, respectively.  相似文献   

7.
Summary The three major isoenzymes of the NADP-dependent aromatic alcohol dehydrogenase (ADH-B), distinguished in polyploid wheats by means of polyacrylamide gel electrophoresis, are shown to be coded by homoeoalleles of the locus Adh-2 on short arms of chromosomes of the fifth homoeologous group. Essentially codominant expression of the Adh-2 homoeolleles of composite genomes was observed in young seedlings of hexaploid wheats (T. aestivum s.l.) and tetraploid wheats of the emmer group (T. turgidum s.l.), whereas only the isoenzyme characteristic of the A genome is present in the seedlings of the timopheevii-group tetraploids (T. timopheevii s.str. and T. araraticum).The slowest-moving B3 isoenzyme of polyploid wheats, coded by the homoeoallele of the B genome, is characteristic of the diploid species Aegilops speltoides S.l., including both its awned and awnless forms, but was not encountered in Ae. bicornis, Ae. sharonensis and Ae. longissima. The last two diploids, as well as Ae. tauschii, Ae. caudata, Triticum monococcum s.str., T. boeoticum s.l. (incl. T. thaoudar) and T. urartu all shared a common isoenzyme coinciding electrophoretically with the band B2 controlled by the A and D genome homoeoalleles in polyploid wheats. Ae. bicomis is characterized by the slowest isoenzyme, B4, not found in wheats and in the other diploid Aegilops species studied.Two electrophoretic variants of ADH-B, B1 and B2, considered to be alloenzymes of the A genome homoeoallele, were observed in T. dicoccoides, T. dicoccon, T. turgidum. s.str. and T. spelta, whereas B2 was characteristic of T. timopheevii s.l. and only B1 was found in the remaining taxa of polyploid wheats. The isoenzyme B1, not encountered among diploid species, is considered to be a mutational derivative which arose on the tetraploid level from its more ancestral form B2 characteristic of diploid wheats.The implication of the ADH-B isoenzyme data to the problems of wheat phylogeny and gene evolution is discussed.  相似文献   

8.
9.
Avenin—like基因是近年来发现的一类新基因。根据小麦avenin-like基因的保守序列,设计合成了一对特异性引物,对拟斯卑尔脱山羊草(Aegilops spehoides,ss)的基因组DNA进行avenin-like基因扩增、克隆、序列测定和表达分析,发现了一个新型avenin—like基因。基因长855bp,编码284个氨基酸残基,分子量约为33kD。Souchern blot结果表明其属于多基因家族。RT—PCR证实了avenin-like基因在籽粒胚乳中特异性表达。其对应的氨基酸序列含有18个半胱氨酸残基,可以形成7对分子内二硫键。研究表明Avenin-like蛋白是一类新型的储藏蛋白。这为小麦加工品质的改良提供了理论依据和遗传资源。  相似文献   

10.
A reassessment of the origin of the polyploid wheats   总被引:1,自引:0,他引:1       下载免费PDF全文
Kimber G 《Genetics》1974,78(1):487-492
The diploid species that donated the A and D genomes to the polyploid wheats have been recognized for some time. New evidence indicates that Triticum speltoides cannot be the B genome donor to T. turgidum or T. aestivum. T. speltoides is probably homologous to the G genome of T. timopheevii. The donor of the B genome to T. turgidum and T. aestivum is currently unrecognized.  相似文献   

11.
The allohexaploid Aegilops species (2n = 6x = 42), Ae. neglecta 6x (UUXtXtNN), Ae. juvenalis (DcDcXcXcUU), and Ae. vavilovii (DcDcXcXcSsSs) regularly form bivalents at metaphase I. However, in Ae. crassa 6x (DcDcXcXcDD) 0.27 quadrivalents per cell were observed probably as a consequence of the partial homology displayed by the D and Dc genomes. Likewise, the synthetic amphiploid Ae. ventricosa-Secale cereale (DDNNRR) is fertile and displays a diploid-like behavior at metaphase I, despite its recent origin. The pattern of synapsis at late zygotene and pachytene in the natural and artificial allohexaploids was analyzed by whole-mount surface-spreading of synaptonemal complexes under an electron microscope. It revealed that chromosomes were mostly associated as bivalents in all cases, the mean of multivalents per nucleus ranging from 0.17 (Ae. neglecta 6x) to 1.03 (Ae. crassa 6x) in the natural species and 1.05 in the Ae. ventricosa-S. cereale amphiploid. It can be concluded that the mechanism controlling bivalent formation in these species and also in the synthetic amphiploid acts mainly at zygotene by restricting synapsis to homologous chromosomes, but also acts at pachytene by preventing chiasma formation in the homoeologous associations. These observations are discussed in relation to the origin and evolution of the mechanism of diploidization in the allopolyploid species of the Poaceae family.  相似文献   

12.
Genotyping was performed for the leaf rust-resistant line 73/00i (Triticum aestivum x Aegilops speltoides). Fluorescence in situ hybridization (FISH) with probes Spelt1 and pSc119.2 in combination with microsatellite analysis were used to determine the locations and sizes of the Ae. speltoides genetic fragments integrated into the line genome. Translocations were identified in the long arms of chromosomes 5B and 6B and in the short arm of chromosome 1B. The Spelt1 and pSc119.2 molecular cytological markers made it possible to rapidly establish lines with single translocation in the long arms of chromosomes 5B and 6B. The line carrying the T5BS x 5BL-5SL translocation was highly resistant to leaf rust, and the lines carrying the T6BS x 6BL-6SL translocation displayed moderate resistance. The translocations differed in chromosomal location from known leaf resistance genes transferred into common wheat from Ae. speltoides. Hence, it was assumed that new genes were introduced into the common wheat genome from Ae. speltoides. The locus that determined high resistance to leaf rust and was transferred into the common wheat genome from the long arm of Ae. speltoides chromosome 5S by the T5BS x 5BL-5SL translocation was preliminarily designated as LrAsp5.  相似文献   

13.

Background

Genome restructuring is an ongoing process in natural plant populations. The influence of environmental changes on the genome is crucial, especially during periods of extreme climatic fluctuations. Interactions between the environment and the organism manifest to the greatest extent at the limits of the species'' ecological niche. Thus, marginal populations are expected to exhibit lower genetic diversity and higher genetic differentiation than central populations, and some models assume that marginal populations play an important role in the maintenance and generation of biological diversity.

Scope

In this review, long-term data on the cytogenetic characteristics of diploid Aegilops speltoides Tauch populations are summarized and discussed. This species is distributed in and around the Fertile Crescent and is proposed to be the wild progenitor of a number of diploid and polyploid wheat species. In marginal populations of Ae. speltoides, numerical chromosomal aberrations, spontaneous aneuploidy, B-chromosomes, rDNA cluster repatterning and reduction in the species-specific and tribe-specific tandem repeats have been detected. Significant changes were observed and occurred in parallel with changes in plant morphology and physiology.

Conclusions

Considerable genomic variation at the chromosomal level was found in the marginal populations of Ae. speltoides. It is likely that a specific combination of gene mutations and chromosomal repatterning has produced the evolutionary trend in each specific case, i.e. for a particular species or group of related species in a given period of time and in a certain habitat. The appearance of a new chromosomal pattern is considered an important factor in promoting the emergence of interbreeding barriers.  相似文献   

14.
Captrapper法是目前全长cDNA文库构建的重要方法之一。在引进、消化、吸收的基础上,通过设计引物,同位素检测,对末端转移反应条件控制等方面做了一些切实可行的改进,形成了一套简单易行的技术体系。利用改进的Captrapper方法,成功构建了小麦B基因组的可能供体种拟斯卑尔脱山羊草(Ae.speltoides)的全长cDNA文库。经综合评价,文库的全长比例达到89.6%,重组率为99%,库容量超过3.0×106cfu。  相似文献   

15.
Cytogenetic work has shown that the tetraploid wheats, Triticum turgidum and T. timopheevii, and the hexaploid wheat T. aestivum have one pair of A genomes, whereas hexaploid T. zhukovskyi has two. Variation in 16 repeated nucleotide sequences was used to identify sources of the A genomes. The A genomes of T. turgidum, T. timopheevii, and T. aestivum were shown to be contributed by T. urartu. Little divergence in the repeated nucleotide sequences was detected in the A genomes of these species from the genome of T. urartu. In T. zhukovskyi one A genome was contributed by T. urartu and the other was contributed by T. monococcum. It is concluded that T. zhukovskyi originated from hybridization of T. timopheevii with T. monococcum. The repeated nucleotide sequence profiles in the A genomes of T. zhukovskyi showed reduced correspondence with those in the genomes of both ancestral species, T. urartu and T. monococcum. This differentiation is attributed to heterogenetic chromosome pairing and segregation among chromosomes of the two A genomes in T. zhukovskyi.  相似文献   

16.
两类二角山羊草细胞质小麦雄性不育系的细胞学研究   总被引:1,自引:2,他引:1  
对具有二角山羊草(Aegilops bicornis)细胞质的同质异核1BL/1RS型小麦雄性不育系ms(Ae.bicornis)-5-1和非1BL/1RS不育系ms(Ae.bicornis)一V9125进行了花药发育细胞学分析。幼穗染色体制片显示,1BL/1RS不育系ms(Ae.bicornis)-5—1减数分裂正常,非1BL/1RS不育系ms(Ae.bicornis)-V9125减数分裂期染色体排列不整齐,出现不正常的四分体和含微核的小孢子。花药发育的细胞学观察表明,1BL/1RS不育系ms(Ae.bicornis)-5—1表现为染败,花药各壁层的发育是正常的;BC3代的非1BL/1RS不育系ms(Ae.bicornis)-V9125表现为园败,且发生了药室合并现象,从细胞学角度证明了二角型小麦不育系存在两个核质互作不育系统。  相似文献   

17.
Relationships between the chromosomes of Aegilops umbellulata and wheat   总被引:3,自引:0,他引:3  
 A comparative genetic map of Aegilops umbellulata with wheat was constructed using RFLP probes that detect homoeoloci previously mapped in hexaploid bread wheat. All seven Ae. umbellulata chromosomes display one or more rearrangements relative to wheat. These structural changes are consistent with the sub-terminal morphology of chromosomes 2 U, 3 U, 6 U and 7 U. Comparison of the chromosomal locations assigned by mapping and those obtained by hybridization to wheat/Ae. umbellulata single chromosome addition lines verified the composition of the added Ae. umbellulata chromosomes and indicated that no further cytological rearrangements had taken place during the production of the alien-wheat aneuploid lines. Relationships between Ae. umbellulata and wheat chromosomes were confirmed, based on homoeology of the centromeric regions, for 1 U, 2 U, 3 U, 5 U and 7 U. However, homoeology of the centromeric regions of 4 U with wheat group-6 chromosomes and of 6 U with wheat group-4 chromosomes was also confirmed, suggesting that a re-naming of these chromosomes may be pertinent. The consequences of the rearrangements of the Ae. umbellulata genome relative to wheat for gene introgression are discussed. Received: 10 July 1997 / Accepted: 19 September 1997  相似文献   

18.
直接杂交与幼胚培养方法结合获得了小麦与东方山羊草、尾状山羊草属间杂种。F1杂种细胞遗传学研究发现,东方山羊草的染色体组显著促进部分同源染色体配对,完全掩盖了小麦ph1b基因的作用,尾状山羊草的染色体组一定程度抑制部分同源染色体配对,尤其强烈抑制小麦ph1b基因的作用。表明东方山羊草的S染色体组上存在类似于小麦的ph1b基因,尾状山羊草的C染色体组上存在类似于小麦的Ph1基因  相似文献   

19.
Summary Heterochromatin differentiation, including band size, sites, and Giemsa staining intensity, was analyzed by the HKG (HCl-KOH-Giemsa) banding technique in the A genomes of 21 diploid (Triticum urartu, T. boeoticum and T. monococcum), 13 tetraploid (T. araraticum, T. timopheevi, T. dicoccoides and T. turgidum var. Dicoccon, Polonicum), and 7 cultivars of hexaploid (T. aestivum) wheats from different germplasm collections. Among wild and cultivated diploid taxa, heterochromatin was located mainly at centromeric regions, but the size and staining intensity were distinct and some accessions' genomes had interstitial and telomeric bands. Among wild and cultivated polyploid wheats, heterochromatin exhibited bifurcated differentiation. Heterochromatinization occurred in chromosomes 4At and 7At and in smaller amounts in 2At, 3At, 5At, and 6At within the genomes of the tetraploid Timopheevi group (T. araraticum, and T. timopheevi) and vice versa within those of the Emmer group (T. dicoccoides and T. turgidum). Similar divergence patterns occurred among chromosome 4Aa and 7Aa of cultivars of hexaploid wheat (T. aestivum). These dynamic processes could be related to geographic distribution and to natural and artifical selection. Comparison of the A genomes of diploid wheats with those of polyploid wheats shows that the A genomes in existing diploid wheats could not be the direct donors of those in polyploid wheats, but that the extant taxa of diploids and polyploids probably have a common origin and share a common A-genomelike ancestor.Contribution of the College of Agricultural Sciences, Texas Tech Univ. Journal No. T-4-233.  相似文献   

20.
Protein inhibitors extracted with water from seeds of Triticum and genetically related species were characterized according to their apparent molecular weights, electrophoretic mobilities and their specificities in inhibiting α-amylases from human saliva and Tenebrio molitor L. larvae. No detectable amylase inhibition activity was found in extracts from diploid wheats, whereas in all tetraploid and hexaploid wheats as well as in the Aegilops species tested we found several amylase inhibitor groups of different molecular weights. In each group, several inhibitor components slightly different in their electrophoretic mobilities, but identical in their inhibition behaviour toward amylases from different origins have been shown. Both from the qualitative and quantitative standpoints, amylase protein inhibitors from hexaploid wheats were the summation of those from tetraploid wheats plus the ones from Aegilops squarrosa. Amylase inhibitors from Aegilops speltoides largely differed from those extracted from tetraploid wheats as well as from all the amylase inhibitors described in plant seeds up to now. These results indicate a relevant homology between the amylase inhibitor coding genes of the D wheat genome and those of the D Aegilops genome and confirm that Ae. squarrosa is the donor of the whole D genome to hexaploid wheats. They also suggest that Ae. speltoides is not the donor of the B genome to polyploid wheats, although a not yet identified Aegilops species might be such a donor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号