首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular graphics has been used to display the electrostatic potentials of the α-helix dipole and that of elastase calculated using atomic charges obtained by a new, simple method1–3. Calculations on the α-helix dipole support the simple dipole model in which the helix is represented by single, half integral charges at the helix termini. The potentials of elastase show some interesting features which may be related to the binding processes.  相似文献   

2.
Resonance vibrational interactions of amide I for the parallel-chain pleated-sheet structure have been treated on the basis of the perturbation theory in a dipole–dipole approximation. The infinite sheet and finite fragments of different types have been considered. The possibility of experimental observation by infrared spectra of parallel-chain pleated-sheet fragments in globular proteins is discussed.  相似文献   

3.
Theoretical treatment of resonance interaction of amide-I vibration has been done in a dipole–dipole approximation on the basis of perturbation theory. A single infinite antiparallel-chain pleated sheet as well as different kinds of its finite fragments have been considered. A good agreement has been obtained between calculated spectral parameters of amide I of the infinite sheet and observed ones in infrared and Raman spectra of synthetic polypeptides and fibrous proteins. A theoretical dependence of the resonance frequency shift of the main component and frequency splitting of two components active in the infrared spectra on the number of polypeptide chains in the finite sheet has been found.  相似文献   

4.
The electrostatic interactions between α-helix dipoles in the crystals of an uncharged helical undecapeptide have been studied in detail. The electrostatic interaction energy between one helix dipole and its 26 nearest neighbors is approximately ?23 kcal mol?1. A very similar result is obtained when calculating the interactions between one helix dipole and all 988 helix dipoles occurring within a distance of 75 Å. It therefore appears that in these crystals of completely uncharged molecules large, favorable electrostatic interactions occur.  相似文献   

5.
By means of conformational energy calculations, we previously showed that the antigenic strength of a series of oligopeptides (derived from the carboxyl terminal sequence of cytochrome c) in a T-lymphocyte proliferation assay depends on their ability to adopt the α-helix conformation. Using experimentally determined statistical weights (within the framework of the Zimm–Bragg theory for the helix–coil transition), here we present a simple free energy analysis of the ability of these peptides to adopt the α-helix conformation in water. The experimental statistical weights have been modified to include the effect of long-range charge–dipole interactions on helix stability. We find that there is a close correlation between the tendency of a peptide to adopt the α-helix conformation and its ability to stimulate antigen-primed T cells. The shortest peptide with a tendency to adopt the α-helix conformation is also the shortest one that exhibits antigenic activity. The rapid and simple method presented here can thus be used to predict relative antigenicities for different peptides derived from cytochrome c.  相似文献   

6.
The active sites of many enzymes are very close to the N-terminus of an α-helix. The helix dipole has been postulated to enhance the binding of anions and speed charge relays in catalysis. We present electrostatic potential maps of α-helices of various lengths using a point charge model. We show that the potential field of the helix can be mimicked by two equal and opposite charges, one at each terminus. The magnitude of these equivalent charges reaches its limiting value of ± 0.2 to 0.3 electron at a helix length of approximately 7–10 residues. We also comment on the relative importance of the helix dipole to that of ionized residues in determining the electrostatics of a protein and discuss what consequences this has for enzymology.  相似文献   

7.
Jon Applequist 《Biopolymers》1981,20(2):387-397
Circular dichroic spectra and oscillator strengths of the π-π transition near 190 nm are calculated for helical (Gly)6 and (Ala)6 at 30° intervals of the backbone torsion angles (?,ψ) over the range -180° ≤ ? ≤ -60°, ?60° ≤ ψ ≤ 180°, using the partially dispersive normal mode treatment of the dipole interaction model. Polarizabilities of atoms and the NC′O group are those determined semiempirically in previous studies. Calculations for (Ala)6 at (?,ψ) angles corresponding to the α-helix, the poly(Pro) II helix, a collagen single helix, a poly-(MeAla) helix, and single β-helices are found to agree well with most of the available experimental data.  相似文献   

8.
A thermodynamic model describing formation of α-helices by peptides and proteins in the absence of specific tertiary interactions has been developed. The model combines free energy terms defining α-helix stability in aqueous solution and terms describing immersion of every helix or fragment of coil into a micelle or a nonpolar droplet created by the rest of protein to calculate averaged or lowest energy partitioning of the peptide chain into helical and coil fragments. The α-helix energy in water was calculated with parameters derived from peptide substitution and protein engineering data and using estimates of nonpolar contact areas between side chains. The energy of nonspecific hydrophobic interactions was estimated considering each α-helix or fragment of coil as freely floating in the spherical micelle or droplet, and using water/cyclohexane (for micelles) or adjustable (for proteins) side-chain transfer energies. The model was verified for 96 and 36 peptides studied by 1H-nmr spectroscopy in aqueous solution and in the presence of micelles, respectively ([set I] and [set 2]) and for 30 mostly α-helical globular proteins ([set 3]). For peptides, the experimental helix locations were identified from the published medium-range nuclear Overhauser effects detected by 1H-nmr spectroscopy. For sets 1, 2, and 3, respectively, 93, 100, and 97% of helices were identified with average errors in calculation of helix boundaries of 1.3, 2.0, and 4.1 residues per helix and an average percentage of correctly calculated helix—coil states of 93, 89, and 81%, respectively. Analysis of adjustable parameters of the model (the entropy and enthalpy of the helix—coil transition, the transfer energy of the helix backbone, and parameters of the bound coil), determined by minimization of the average helix boundary deviation for each set of peptides or proteins, demonstrates that, unlike micelles, the interior of the effective protein droplet has solubility characteristics different from that for cyclohexane, does not bind fragments of coil, and lacks interfacial area. © 1997 John Wiley & Sons, Inc. Biopoly 42: 239–269, 1997  相似文献   

9.
The secondary structure ofCerebratulus lacteus toxin B-IV, a neurotoxic polypeptide containing 55 amino acid residues and four disulfide bonds, was experimentally estimated by computer analyses of toxin circular dichroism (CD) and laser Raman spectra. The CD spectrum of the toxin displayed typical α-helical peaks at 191, 208, and 222 nm. At neutralpH, the α-helix estimates from CD varied between 49 and 55%, when nonrepresentative spectrum analytical methods were used. Analysis of the laser Raman spectrum obtained at a much higher toxin concentration yielded a 78% α-helix estimate. Both CD and Raman spectroscopic methods failed to detect any β-sheet structure. The spectroscopic analyses revealed significantly more α-helix and less β-sheet for toxin B-IV than was predicted from its sequence. To account for the difference between the 49–55% helix estimate from CD spectra and the 78% helix estimate from the Raman spectrum, we postulate that some terminal residues are unfolded at the low toxin concentrations used for CD measurements but form helix at the high toxin concentration used for Raman measurements. Our CD observations showing thatCerebatulus toxin B-IV helix content increases about 15% in trifluoroethanol or at highpH are consistent with this interpretation.  相似文献   

10.
The conformation of poly-L-alanine in hexafluoroisopropanol   总被引:2,自引:0,他引:2  
J R Parrish  E R Blout 《Biopolymers》1972,11(5):1001-1020
High-molecular-weight poly-L -alanine dissolved in hexafluoroisopropanol exhibits infrared, ultraviolet, circular dichroism, and optical rotatory dispersion spectra which are unique and unlike any other previously reported polypeptide spectra. Strong evidence that a helical conformation is present is shown by the high degree of hypochromism in the 187mμ absorption peak and by the positions of the amide infrared bands. The CD and ORD spectra are also similar to those of α-helical polypeptides, though important qualitative and qualitative differences are observed. To explain the novel spectra, which are not mixtures of the spectra of previously reported polypeptide conformations, a new α-helix-like conformation is proposed. The postulated conformation (a doubly hydrogen-bonded helix) is a distorted α-helix in which the peptide carbonyl groups point slightly out from the helix axis and are hydrogen bonded simul taneously both to the NH of the fourth peptide residue to the carboxyl terminal side (as in the classical α-helix), as well as to a solvent molecule's hydroxyl hydrogen.  相似文献   

11.
The normal modes have been calculated for β-turns of types I, II, III, I′, II′, and III′. The complete set of frequencies is given for the first three structures; only the amide I, II, and III modes are given for the latter three structures. Calculations have been done for structures with standard dihedral angles, as well as for structures whose dihedral angles differ from these by amounts found in protein structures. The force field was that refined in our previous work on polypeptides. Transition dipole coupling was included, and is crucial to predicting frequency splittings in the amide I and amide II modes. The results show that in the amide I region, β-turn frequencies can overlap with those of the α-helix and β-sheet structures, and therefore caution must be exercised in the interpretation of protein bands in this region. The amide III modes of β-turns are predicted at significantly higher frequencies than those of α-helix and β-sheet structures, and this region therefore provides the best possibility of identifying β-turn structures. Amide V frequencies of β-turns may also be distinctive for such structures.  相似文献   

12.
It has already been show that the helix senses of poly(β-benzyl L -aspartate) and poly(β-methyl L -aspartate) are left-handed, while the poly esters of n-propyl, isopropyl, n-butyl, and phenethyl L -asparate are all right-handed. The effect of changes in helix sense from the left-handed to the right-handed α-helical form on the infrared spectra of copolymers of benzyl L -aspartate with ethyl, n-butyl, isopropyl, n-propyl, and phenethyl L -aspartate have been studied. Those show that for the right-handed helical form the amide band frequencies fall within the range given by Elliott,7 while for the left-handed form the frequencies are higher. The frequency ranges for the two helix senses are given and have been used to show that poly (β-n-propyl L -aspartate) in chloroform solution undergoes a transition from the right-handed to the left-handed helix form on heating. Polarized infrared studies of the different copolymers show that the disposition of the side chain ester groups is different for the two forms. Although methyl L -aspartate forms a left-handed α-helix similar to benzyl L -aspartate, the introduction of methyl L -aspartate residues into poly (β-benzyl L -aspartate) prevents the formation of the ω-helix. The factors involved in the formation of this helix form are discussed.  相似文献   

13.
The effects on protein stability of negatively charged Glu side chains at different positions along the length of the α-helix were investigated in the two-stranded α-helical coiled-coil. A native coiled-coil has been designed which consists of two identical 35 residue polypeptide chains with a heptad repeat QgVaGbAcLdQeKf and a Cys residue at position 2 to allow the formation of an interchain 2-2′ disulphide bridge. This coiled-coil contains no intra- or interchain electrostatic interactions and served as a control for peptides in which Glu was substituted for Gln in the e or g heptad positions. The effect of the substitutions on stability was determined by urea denaturation at 20°C with the degree of unfolding monitored by circular dichroism spectroscopy. A Glu substituted for Gln near the N-terminus in each chain of the coiled-coil stabilizes the coiled-coil at pH 7, consistent with the charge–helix dipole interaction model. This stability increase is modulated by pH change and the addition of salt (KCl or guanidine hydrochloride), confirming the electrostatic nature of the effect. In contrast, Glu substitution in the middle of the helix destabilizes the coiled-coil because of the lower helical propensity and hydrophobicity of Glu compared with Gln at pH 7. Taking the intrinsic differences into account, the apparent charge–helix dipole interaction at the N-terminus is approximately 0.35 kcal/mol per Glu substitution. A Glu substitution at the C-terminus destabilizes the coiled-coil more than in the middle owing to the combined effects of intrinsic destabilization and unfavourable charge–helix dipole interaction with the negative pole of the helix dipole. The estimated destabilizing charge–helix dipole interaction of 0.08 kcal/mol is smaller than the stabilizing interaction at the N-terminus. The presence of a 2-2′disulphide bridge appears to have little influence on the magnitude of the charge–helix dipole interactions at either end of the coiled-coil. © 1997 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
15.
To elucidate the structural characteristics of alcohol-denatured proteins, we measured the vacuum-ultraviolet circular dichroism (VUVCD) spectra of six proteins-myoglobin, human serum albumin, α-lactalbumin, thioredoxin, β-lactoglobulin, and α-chymotrypsinogen A-down to 170 nm in trifluoroethanol solutions (TFE: 0-50%) and down to 175 nm in methanol solutions (MeOH: 0-70%) at pH 2.0 and 25°C, using a synchrotron-radiation VUVCD spectrophotometer. The contents of α-helices, β-strands, turns, poly-L-proline type II helices (PPIIs), and unordered structures of these proteins were estimated using the SELCON3 program, including the numbers of α-helix and β-strand segments. Furthermore, the positions of α-helices and β-strands on amino acid sequences were predicted by combining these secondary-structure data with a neural-network method. All alcohol-denatured proteins showed higher α-helix contents (up to ~ 90%) compared with the native states, and they consisted of several long helical segments. The helix-forming ability was higher in TFE than in MeOH, whereas small amounts of β-strands without sheets were formed in the MeOH solution. The produced α-helices were transformed dominantly from the β-strands and unordered structures, and slightly from the turns. The content and mean length of α-helix segments decreased as the number of disulfide bonds in the proteins increased, suggesting that disulfide bonds suppress helix formation by alcohols. These results demonstrate that alcohol-denatured proteins constitute an ensemble of many long α-helices, a few β-strands and PPIIs, turns, and unordered structures, depending on the types of proteins and alcohols involved.  相似文献   

16.
The secondary structure implications of precipitation induced by a chaotropic salt, KSCN, and a structure stabilizing salt, Na2SO4, were studied for twelve different proteins. α-helix and β-sheet content of precipitate and native structures were estimated from the analysis of amide I band Raman spectra. A statistical analysis of the estimated perturbations in the secondary structure contents indicated that the most significant event is the formation of β-sheet structures with a concomitant loss of α-helix on precipitation with KSCN. The conformational changes for each protein were also analyzed with respect to elements of primary, secondary and tertiary structure existing in the native protein; primary structure was quantified by the fractions of hydrophobic and charged amino acids, secondary structure by x-ray estimates of α-helix and β-sheet contents of native proteins and tertiary structure by the dipole moment and solvent-accessible surface area. For the KSCN precipitates, factors affecting β-sheet content included the fraction of charged amino acids in the primary sequence and the surface area. Changes in α-helix content were influenced by the initial helical content and the dipole moment. The enhanced β-sheet contents of precipitates observed in this work parallel protein structural changes occurring in other aggregative phenomena.  相似文献   

17.
Abstract

The circular dichroism spectra of three different purified carboxy terminal fragments 93–236, 112–236 and 132–236 of the bacteriophage γ cI repressor have been measured and compared with those of the intact repressor and the amino terminal fragment 1–92. All three carboxy terminal fragments contain mostly β-strands and loops, a minor helix content increasing with the size of the fragment, showing that the 93–131 region previously called a hinge is structured. Fourier transformed infrared spectra also showed that fragment 93–236 contains α-helices, β-sheets and turns but fragment 132–236 contains no detectable α-helix, only β-sheets and turns. Papain is known to cleave the γ repressor, but it is shown here that it cannot cleave the operator-bound repressor dimer. For the 132–236 fragment, both the wt and the SN228 mutant previously shown to be dimerization defective in the intact, gave similar dimerization properties as investigated by HPLC at 2 to 100 µM protein concentration, with a KD of 13.2 µM and 19.1 µM respectively. The papain cleavage for wt and SN228 proceed at equal rates for the first cleavage at 92–93; however, the subsequent cleavages are faster for SN228. The three Cys residues in the 132–236 fragment were found to be unreactive upon incubation with DTNB, indicating the thiol sulfur atoms are buried in the repressor carboxy terminal domain. Denaturation of the 132–236 fragment studied by tryptophan fluorescence shows two transitions centered at 1.5 M and 4.5 M of urea.  相似文献   

18.
The C-peptide of ribonuclease A (residues 1 to 13) is obtained by cyanogen bromide cleavage at Met13, which converts methionine to a mixture of homoserine lactone (giving C-peptide lactone) and homoserine carboxylate (giving C-peptide carboxylate). The helix-forming properties of C-peptide lactone have been reported. The helix is formed intramolecularly in aqueous solution, is stabilized at low temperatures (0 to 20 °C) and also by a pH-dependent interaction between sidechains. The C-peptide lactone helix is about 1000-fold more stable than expected from “host-guest” data for helix formation in synthetic polypeptides.Here we report the failure of C-peptide carboxylate to form an α-helix in comparable conditions. Formation of a salt-bridge between the α-COO? group and the imidazolium ring of His12+ appears to be responsible for the suppression of helix formation. The presence of the Hse13-COO? … His12+ salt-bridge in C-peptide carboxylate is shown by 1H nuclear magnetic resonance titration of the amide proton resonances of His12 and Hse13, and is expected from model peptide studies. The most probable reason why C-peptide carboxylate does not form an α-helix is that the Hse13-COO? … His12+ salt-bridge competes successfully with a helix stabilizing salt-bridge (Glu9? … His12+).S-peptide (residues 1 to 20 of ribonuclease A) does form an α-helix with properties similar to those of the C-peptide (lactone) helix, which shows that the lactone ring of C-peptide lactone is not needed for helix formation.These results support the hypothesis that a Glu9? … His12+ salt-bridge stabilizes the C-peptide (lactone) helix, and they show that specific interactions between side-chains can be important in preventing as well as in promoting α-helix formation.  相似文献   

19.
13C-, 1H-nmr, CD, and x-ray crystallography revealed β-turns of type III for Boc-Gly-L-Ala-Aib-OMe, Boc-L-Ala-Aib-L-Ala-OMe; the 310-helix for Boc-Aib-L-Ala-Aib-L-Ala-Aib-OMe; and antiparallel arranged α-helices for Boc-L-Ala-Aib-Ala-Aib-Ala-Glu(OBzl)-Ala-Aib-Ala-Aib-Ala-OMe. An N-terminal rigid α-helical segment is found in the polypeptide antibiotics alamethicin, suzukacillin, and trichotoxin. The α-helix dipole is essential for their voltage-dependent pore formation in lipid bilayer membranes, which is explained by a flip-flop gating mechanism based on dipole–dipole interactions of parallel and antiparallel arranged α-helices within oligomeric structures.  相似文献   

20.
The primary structure and conformation of the polypeptide antibiotic suzukacillin A are investigated. Suzukacillin A isolated from the Trichoderma viride strain 1037 and exhibits membrane modifying and lysing properties similar to those of alamethicin.A combined gas chromatographic mass spectrometric analysis of the trifluoroacetylated peptide methyl esters of partial hydrolysates revealed a tentative sequence of 23 residues including 10 2-methylalanines and one phenylalaninol, which shows many fragments known from alamethicin: Ac-Aib-Pro-Val-Aib-Val-Ala-Aib-Ala-Aib-Aib-Gln-Aib-Leu-Aib-Gly-Leu-Aib-Pro-Val-Aib-Aib-Glu(Pheol)-Gln-OH. All chiral amino acids and phenylalaninol have l-configuration. Ultraviolet and infrared spectroscopy, circular dichroism in various solvents and in particular 13C nuclear magnetic resonance have been used for a comparative study of suzukacillin with alamethicin. Suzukacillin has a partially α-helical structure and the helix content increases largely from polar to lipophilic solvents. Suzukacillin aggregates more strongly than alamethicin in aqueous media due to a longer α-helical part and higher number of aliphatic residues. A part of the α-helix is exceptionally stabilized due to 2-methylalanine residues shielding the peptide bonds from interactions with polar solvents. In lipophilic solvents and lecithin vesicles particularly large temperature induced reductions of the high α-helix content are found for alamethicin. Suzukacillin shows similar temperature coefficients in lipophilic media, however, in contrast to alamethicin a more linear change in intensity of the Cotton effects is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号