首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmalemma electrical properties were used to investigate K+ transport and its control in internodal cells of Chara corallina Klein ex Willd., em R.D.W. Cell exposure to solutions containing 10 mm KCl caused the potential, normally −250 millivolts (average), to depolarize in two steps. The first step was a 21 millivolt depolarization that lasted from 1 to 40 minutes. The second step started with an action potential and left the membrane potential at −91 millivolts, with a 10-fold reduction in resistance. We suggest that the second step was caused by the opening of K+ -channels in the membrane. This lowered the resistance and provided a current pathway that partially short-circuited the electrogenic pump. Although largely short-circuited, the electrogenic pump was still operating as indicated by: (a) the depolarized potential of −91 millivolts was more negative than Ek (=−42 millivolts in 10 mm K+); (b) a large net K+ uptake occurred while the cell was depolarized; (c) both the electrogenic pump inhibitor, diethylstilbestrol, and the sulfhydryl-reagent N-ethylmaleimide (which increased the passive membrane permeability) further depolarized the potential in 10 mm KCl.A two-phase recovery back to normal cell potentials occurred upon lowering the K+ concentration from 10 to 0.2 mm. The first phase was an apparent Nernst potential response to the change in external K+ concentration. The second phase was a sudden hyperpolarization accompanied by a large increase in membrane resistance. We attribute the second phase to the closing of K+ -channels and the removal of the associated short-circuiting effect on the electrogenic pump, thereby allowing the membrane to hyperpolarize. Further experiments indicated that the K+ -channel required Ca2+ for normal closure, but other ions could substitute, including: Na+, tetraethylammonium, and 2,4,6-triaminopyrimidine. Apparently, K+ -channel conductance is determined by competition between Ca2+ and K+ for a control (gating?) binding site.  相似文献   

2.
Single cell electropotentials of barley (Hordeum vulgare L., cv. `Compana') root cortex were measured at different external concentrations of KCl in the presence of Ca2+. The roots were low in salt from seedlings grown on 0.5 mm aerated CaSO4 solution. Thus, the conditions were equivalent to those used to define the dual mechanisms found with radioactive tracer-labeled ion uptake. In 0.5 mm CaSO4 alone, there is an increase with time of cell negativity from about -65 millivolts 15 minutes after cutting segments to about -185 millivolts in 6 to 8 hours. Two possible hypotheses, not mutually exclusive, are offered to explain this aging effect: that cutting exposes plasmodesmata which are leaky initially but which seal in time, and that some internal factors, e.g., hormones diffusing from the apex, have a regulatory effect on the cell potential, an influence which becomes dissipated in isolated segments and permits the development of a higher potential difference. In any case changes in selective ion transport must be involved. The cell potentials at KCl concentrations above 2.0 mm are more negative than would be expected for a passive diffusion potential. It is suggested that this discrepancy may be due to an electrogenic pump or to a higher K+ concentration in the cytoplasm than in the remainder of the cell, or perhaps to both. Whether there is a clear relationship between cell potential and mechanisms 1 and 2 of cation transport depends upon whether the cell potentials of freshly cut or of aged tissue represent the values relevant to intact roots.  相似文献   

3.
A study has been made of the effects of the inhibitors carbonylcyanide m-chlorophenylhydrazone (CCCP), 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU), and of anoxia on the light-sensitive membrane potential of Vallisneria leaf cells. The present results are compared with the known effects of these inhibitors on ion transport and photosynthesis (Prins 1974 Ph.D thesis). The membrane potential is composed of a diffusion potential plus an electrogenic component. The electrogenic potential is about −13 millivolts in the dark and −80 millivolts in the light. The inhibitory effect of DCMU and CCCP on the electrogenic mechanisms strongly depends on the light intensity used, the inhibition being less at a higher light intensity. This is of significance in view of the often conflicting results obtained with these inhibitors. With ion transport in Vallisneria the electrogenic pump derives its energy from phosphorylation; however, the process which causes the initial light-induced hyperpolarization and the process that keeps the membrane potential at a steady hyperpolarized state in the light have different energy requirements. The action of photosystem I alone is sufficient to induce the initial hyperpolarization. For continuous operation in the light the activity of photosystem II also is needed.  相似文献   

4.
Anacystis nidulans (Richt.) Drouet & Daily (UTEX 625), grown in batch culture with 0.5% CO2 in air, was supplied with chloride labelled with 36Cl in light and dark. Uptake in light was stimulated relative to uptake in darkness. A single transport system for Cl? with an apparent Km for Cl? of 0.14 mM was identified. Chloride in the cells reached a maximum value after 30–50 min at 25 C. At this point the internal Cl? concentration was calculated to be 60-fold the external (0.1 mM) in light and 37-fold in darkness. DCMU (3-[3,4-dichlorophenyl]–1, 1-dime-thylurea), at concentrations which abolished photosynthetic O2 evolution did not inhibit Cl? uptake in light. Carbonyl cyanide m-chlorophenyl hydrazone (CCCP), at uncoupling concentrations for photosynthesis and dark respiration, strongly inhibited Cl? uptake in light and darkness. N,N'-dicyclohexyl carbodiimide (DCCD), an energy transfer inhibitor, inhibited light Cl? uptake more slowly than photosynthesis but had no effect on dark Cl? uptake. It is concluded that Cl? uptake in A. nidulans was active in light and darkness, and that ATP was the probable energy source for transport.  相似文献   

5.
Glass capillary microelectrodes were used to study the electrical potential difference (PD) between the xylem exudate of excised corn roots, Zea mays L. Golden Bantam hybrid, and the external solution. A survey of the effects of various ions on the PD was made. With 1 mm single salt solutions, the PD was between 25 and 50 mv, exudate negative. The PD responded to concentration differences in single salt solutions of K+, Na+, and Ca2+ in a manner suggestive of cation selectivity and cation diffusion potentials. With Ca2+ present, the PD was insensitive to concentration changes of other cations. Substitution of NO3 for Cl in K+ solutions increased the PD by 2 to 5 mv, although in general the PD showed little response to anion concentration changes. The PD was partially abolished by cyanide. The remaining fraction of the PD was sensitive to concentration changes in external K+, and we postulate that the PD is the result of both a diffusion potential and an electrogenic pump.  相似文献   

6.
An electrogenic pump, a slowly activating K+ inward rectifier and an intermittent, spiky, K+ inward rectifier, have been identified in the plasmalemma of whole protoplasts from root cortical cells of wheat (Triticum) by the use of patch clamping techniques. Even with high external concentrations of K+ of 100 m m, the pump can maintain the membrane potential difference (PD) down to –180 mV, more negative than the electrochemical equilibrium potentials of the various ions in the system. The slowly activating K+ inward rectifier, apparent in about 23% of protoplasts, allows inward current flow when the membrane PD becomes more negative than the electrochemical equilibrium potential for K+ by about 50 mV. The current usually consists of two exponentially rising components, the time constant of one about 10 times greater than the other. The longer time constant is voltage dependent, while the smaller time constant shows little voltage dependence. The rectifier deactivates, on return of the PD to less negative levels, with a single exponential time course, whose time constant is strongly voltage dependent. The spiky K+ inward rectifier, present in about 68% of protoplasts, allows intermittent current, of considerable magnitude, through the plasmalemma at PDs usually more negative than about –140 mV. Patch clamp experiments on detached outside-out patches show that a possibly multi-state K+ channel, with maximum conductance greater than 400 pS, may constitute this rectifier. The paper also considers the role of the pump and the K+ inward rectifiers in physiological processes in the cell.We thank Don Mackenzie and Kay Morris for their valuable technical assistance, particularly in the preparation of protoplasts. The project is funded by the Australian Research Council.  相似文献   

7.
Transmembrane electropotential difference (PD) was measured in whole roots of barley (Hordeum vulgare L. cvs. Compana and Himalaya). Seedlings were grown 4 to 5 days in aerated 0.5 mm CaSO(4) or a nutrient solution. Measurements of PD were made with roots bathed in CaSO(4), KCl + CaSO(4), or the nutrient solution. The following results were found. (a) There was a radial PD gradient with epidermal cells being 10 to 58 millivolts less negative than cells in the third layer of the cortex (outside to inside). There was no longitudinal PD gradient in the region 0.5 to 4 cm from the root tip, nor was there any difference between the PD of young root hairs and other epidermal cells. (b) Cell PD in excised whole roots was not detectably different from that found in roots attached to the shoot, and was unchanged for 2 hours from excision. (c) In 1-centimeter sections of root, cell PD at the freshly cut surface was depolarized by 90 millivolts from that in the intact root; cells farther than 1 millimeter from the cut surface were not depolarized. The PD of cells at the cut surface became more negative upon aging the segment in 0.5 mm CaSO(4), eventually becoming greater by -25 millivolts than that in cells of intact roots. Cells in segments to which the root tips were attached had less negative PDs after aging than those in subapical segments, indicating a possible hormonal effect. PDs in aged, excised segments are not equivalent to those in intact roots. (d) Creeping of cytoplasm over electrode tips inserted into the vacuole gave measurements of vacuole-to-cytoplasm PD of + 9 millivolts in 0.5 mm CaSO(4) and + 35 millivolts in 1 mm KCl + 0.5 mm CaSO(4). Most of the cell PD was across the plasmalemma. (e) The reducing sugar content of roots in CaSO(4) solution was greater than that of roots in the nutrient solution in which ion uptake, particularly K(+) occurred.  相似文献   

8.
Summary In giant neurons of subesophageal ganglion of the Japanese land snail,Euhadra quaestia Deshayes, permeation of Zn ions through Ca channels were investigated with a conventional current clamp method.All-or-none action potentials of long duration (90 to 120 sec) were evoked in 24mm Zn containing salines. The overshoots were about +10 mV and the maximum rate of rises (MRRs) was about 2.9 V/sec. The amplitudes and the MRRs of the action potentials depended on external Zn ion concentrations.The action potentials were suppressed by specific Ca-channel inhibitors such as Co2+, La3+ and Verapamil, but they were resistant to Na-channel inhibitor, tetrodotoxin, even at 30 m.It is concluded that these action potentials are generated by Zn ions permeating Ca channels in snail neuronal membrane.On the basis of Hagiwara and Takahashi's (S. Hagiwara & K. Takahashi, 1967,J. Gen. Physiol. 50:583) model of Ca channels, it is inferred that Zn ions are 5 to 10 times stronger in affinity to Ca channels than Ca ions, but 10 to 20 times less permeable.  相似文献   

9.
The capacity of sodium orthovanadate to inhibit the plasmalemma H+ ATPase of Nitella translucens internodal cells in vivo was tested. Here we show that 1 millimolar vanadate added externally depolarizes strongly and permanently the membrane potential, both in dark and light, to the Nernst potential for potassium consistent with pump inhibition by vanadate. From the results it is clear that the H+ ATPase is always active, under light or dark conditions, in contradiction with the widespread idea of pump inactivation by darkness. The changes in conductance for light, dark, and vanadate-induced conditions are analyzed. The effect of dark on membrane passive permeabilities and on the possibility that some plasmalemma channels could be regulated by a phosphorylation-dephosphorylation process is discussed.  相似文献   

10.
Using variable to maximum fluorescence (Fv/Fm) as the criterion, the down regulation of photosynthesis by high light stress was characterized in the detached leaves of Artabotrys hexapetatus. The decrease in Fv/Fm was corelated with the decrease in oxygen evolution by thylakoids isolated from high light exposed leaves. The decrease in Fv/Fm was linear with increasing time of exposure to high light. A comparison of recovery measured as Fv/Fm, in low light versus dark, revealed that the recovery in darkness was as significant as in low light. Since the relaxation of fluorescence was a rapid response after exposure to high light and the fact that the recovery occurs in total darkness, it is concluded that photoinhibition and down regulation of photosynthesis by high light are independent events.Abbreviation Fpl- initial plateau - Fm- maximum fluorescence - Fo- prompt fluorescence - Fv- variable fluorescence - PFD- photon flux density - PS I (II)- Photosystem I (II)  相似文献   

11.
Summary The possibility that phytochrome is involved in the promotion of flowering by far-red light was investigated. The addition of far-red (FR) to a day extension with red (R) light promotes inflorescence initiation in Lolium. A 2-hour interruption with darkness also promoted flowering compared with the uninterrupted red light control; apex length was further increased by a 10-minute FR irradiation given before the 2-hour dark interruption and was decreased by 10-minutes of R light given in the middle: both FR promotion and R inhibition were reversed by R and FR respectively. Apex length increased approximately linearly with increasing duration of dark interruption up to at least 2 1/2 hours. When varying ratios of R:FR light were substituted for a 2-hour dark period, apex length was increasingly depressed as the % R was increased above 25%; no difference between 25% R/75% FR and 100% FR could be detected. Apex length was inversely linearly related to the calculated [Pfr]/[P] ratios above about 40% Pfr.FR promoted flowering when given during a 5-hour interruption of a day extension with R light but, between 0.25 and 0.90 J m2 s-1, there was no effect of intensity of FR; at 0.11 J m-2 s-1 apex length was shorter than at 0.25 J m-2 s-1 but longer than in darkness. When the duration of FR (from the beginning of a dark interruption of a day extension with R) was varied, apex length increased with increasing duration of FR up to 1 1/4 to 2 hours but further increasing the duration of FR did not promote flowering more.The results implicate phytochrome in the promotion of flowering by FR light. It has been demonstrated that a low [Pfr]/[P] ratio (less than present in 25% R/75% FR) is needed over a relatively long period of time: this explains why a relatively high proportion of FR light must be added to R for several hours in order to give maximum promotion of flowering. It is concluded that, in Lolium, the increased flowering response to FR light is brought about by a reduction of [Pfr]/[P] ratio at the appropriate time, although the possibility that another effect of far-red is also involved has not been rigorously excluded.  相似文献   

12.
The effects of various inhibitors on the membrane potential, resistance, and K+ permeability of Chara corallina were measured, providing evidence that there is an electrogenic pump in the membrane. It was found that: (a) 5.0 μm carbonyl cyanide m-chlorophenyl hydrazone depolarizes the membrane potential and increases the membrane resistance. This inhibition is faster in the dark than in the light but the extent of inhibition is the same in both cases. (b) Fifty μm dicyclohexylcarbodiimide increases the resistance and the K+ permeability and depolarizes the membrane to a diffusion potential mainly controlled by K+. (c) Forty μm diethylstilbestrol and 0.1 mm 2,4-dinitrophenol increase the resistance and depolarize the potential to a value given by the Goldman diffusion equation. (d) Both 3-(3,4-dichlorophenyl)-1,1-dimethylurea and darkness (at pH 6) cause the membrane resistance to increase but neither has a large effect on the potential. 3-(3,4-dichlorophenyl)-1,1-Dimethylurea increases K+ permeability while darkness decreases it.  相似文献   

13.
The coarse of growth and cell division in synchronized cultures of Chlorella pyrenoidosa was studied after the addition of metabolic inhibitors at differing times during the cell cycle (14 h light - 10 h darkness with nitrate as nitrogen source. 12 h light: 12 h darkness with urea as nitrogen source). Dinitrophenol (DNP) added to a final concentration of 0.3 mM at any time in the synchronization cycle, the compound remaining in the suspension from the time of addition to the end of the dark period, inhibited spore formation completely. Growth measured as increase in cell volume was less sensitive to the action of the inhibitor. Chloramphenicol (CAP) added dining the 0–5 h interval to a final concentration of 0.1 mM resulted in 80 per cent inhibition of cell division. Similar treatment started at successive times thereafter resulted in a gradual decrease of the inhibition. Treatment at the 14th hour and during the dark period did not affect the sporulation. Similar experiments with 0.9 mM puromycin added at various times during the illumination period gave almost complete inhibition of cell division, while the growth was reduced by only 25 per cent. para-Fluorophenylalanine (p-FPhe) at 3.3 × 10?2 mM stopped cell division nearly completely irrespective of addition time in the light period. Addition during the dark period also prevented an increase in the number of tree cells. In this case about half of the cells produced spores which were not released. It is concluded that DNP inhibits all stages of preparation for cell division, as well as the division process itself. With CAP a genuine transition point of preparation for cell division was observed, although its interpretation as related to protein synthesis is somewhat uncertain. With puromycin and p-FPhe no transitions were observed.  相似文献   

14.
H. Kubo  H. Mihara 《Planta》1986,168(3):337-339
Sporangiophore initiation in Pilobolus crystallinus grown in white light was induced by either a dark or a low-temperature treatment. The period of darkness necessary to induce sporangiophore initiation was shortened by lowering the temperature. Arrhenius plots for the sporangiophore-suppressing reaction in both light and darkness consisted of two straight lines with a Q10 of about 2 at lower temperatures and 8–11 at higher temperatures. The temperature at which the Q10 changed was the lower, the higher the fluence rate: 14° C at 8 W/m2, 19.5° C at 0.24 W/m2 and 24.5° C in darkness. Possible interpretations of these results are briefly presented.Abbreviations %SP percentage of trophocysts initiating sporangiophores - D50% duration of treatment required to 50% sporangiophore initiation  相似文献   

15.
Light-Dark Changes in Proline Content of Barley Leaves under Salt Stress   总被引:3,自引:0,他引:3  
Proline accumulation in leaves of barley (Hordeum vulgare L. cv. Alfa) seedlings treated with 150 mM NaCl was promoted in the light and suppressed in the dark. The light/dark changes of proline content was enhanced with each 12 h light/12 h dark cycle and the proline content increased steadily. Root and shoot concentrations of Na+ and Cl in salt treated plants increased about 10 to 25 times as compared to the control. The content of these ions and the content of malondialdehyde were higher in the shoot of seedlings exposed to salt stress for 4 d in the light in comparison with the seedlings exposed to NaCl for 4 d in darkness. Light stimulated both ions and proline accumulation in the leaves and has no effect in the roots. Oxygen uptake was higher in the seedlings kept 4 d in the light which have higher endogenous free proline content. Chlorophyll fluorescence measurements showed that the photochemical activity of PS 2 slightly decreased as a result of salt stress and was not influenced by light regimes during plant growth.  相似文献   

16.
It is generally accepted that purple membrane of H.halobium functions as a light-driven hydrogen ion pump translocating hydrogen ions from inside the cell to the external medium. However, experimental data from this laboratory together with those obtained by others have always shown an initial alkalinization of the external medium in the light. Additionally, we have found that oxygen can also induce an alkalinization of the bathing solution in the dark. These results can be readily explained if the direction of hydrogen-ion translocation is reversed, that is that both light and oxygen generate an electrochemical gradient of hydrogen ions, which is outwardly directed for ATP synthesis.  相似文献   

17.
The effect of oxygen concentration on the rate of CO2-uptake in continuous and intermittent light was studied as well as the CO2-fixation during a short dark period after light was turned off. In addition the dark respiration and the CO2-compensation point of attached and detached corn leaves were determined. Leaves of 4 to 22-day old plants were used as experimental material. A closed circuit system of an infrared carbon dioxide analyzer was employed to measure the rate of CO2-exchange. It was found that in an atmosphere consisting of 100 % oxygen, there was about 50 per cent inhibition of the rate of CO2-uptake in continuous and intermittent light compared to that in an atmosphere consisting of 21% oxygen. The same was true of the rate of CO2-fixation in darkness during a short period after the light was turned off. Since the response to oxygen concentration of the CO2-uptake in light and of the CO2-fixation in darkness after the light was turned off were similar, it is concluded that the fixation of CO2 in the short dark period represents an over- shoot of photosynthesis. The rate of dark respiration was little affected by the oxygen concentration in the ranges used in the experiments. The carbon dioxide compensation point which has been observed in leaves of 4 to 14-day old plants was not influenced by either oxygen concentration or light intensity. Since the changes in the rate of CO2-uptake due to changes in the concentration of oxygen and light intensity had no effect on the CO2-compensation point, it is concluded that a reabsorption of respiratory CO2 by photosynthesis could not account for the low value of this point. These results are interpreted as a further corroboration of the statement that the leaves of corn lack the process of photorespiration and that dark respiration is inhibited in light. It was observed that the rate of the CO2-uptake gradually increased in plants which were from 4 to 22-days old. The inhibitory effect of high concentration of oxygen on the rate of CO2-uptake was relatively higher in old plants than in young ones.  相似文献   

18.
Spinach plants were grown in bowls of aerated nutrient solutionin a controlled environment chamber for 24 h, and harvestedevery 3·5-5 h to record their growth, nitrate and wateruptake, and plant nitrate concentration. Twelve such experimentsare described, either with a 14/10 h dark/light regime, or continuouslight or darkness. The irradiance was either 110, 320, or 510µmol m-2 s-1 (PPFD). All these regimes began at the endof the light period of a 14/10 h dark/light regime (510 µmolm-2 s-1) lasting approximately 2 weeks. Nitrate uptake rate per g of dry weight of plant continued almostunabated at about 17 µmol h-1 through the initial 14-hdark period, and then fell away sharply if the light was notrestored, but increased slightly when it was. With continuouslight at 510 µmol m-2 s-1, uptake rate rose steadily forthe first 24 h of light, and then fell sharply for about 6 h.Shoot nitrate concentration increased about three-fold in thedark phase, and declined in the light at a rate which was positivelyrelated to the irradiance. Root nitrate concentration was severaltimes higher than that of the shoot: its diurnal change wassmaller (relative to the mean) than that of the shoot. Nitratereduction occurred to a small extent in the dark, and increasedrapidly as soon as the lights came on, to remain at a roughlyconstant rate (related to the irradiance) throughout the lightphase. Dry matter increase in the light was related to irradiance,but with little increase above 320 µmol m-2 s-1. Respiratoryweight loss in the dark was not detectable. Rate of fresh weightincrease was approximately constant throughout light and darkperiods. The results compare quite well with the predictions of a simplesimulation model, based on the pump/leak principle.Copyright1994, 1999 Academic Press Spinacia oleracea, nitrate, uptake, reduction, influx, efflux, diurnal, regulation, model, simulation  相似文献   

19.
This review considers the effects of temperature on insect diapause induction and the photoperiodic response, and includes constant temperature, temperature cycles, pulses and steps in daily light–dark cycles, constant darkness and in constant light, all with reference to various circadian‐based “clock” models. Although it is a comparative survey, it concentrates on two species, the flesh fly Sarcophaga argyrostoma and its pupal parasite Nasonia vitripennis, which possess radically different photoperiodic mechanisms, although both are based upon the circadian system. Particular attention is given to the effects of daily thermoperiod in darkness and to low and high temperature pulses in conjunction with a daily light–dark cycle, treatments that suggest that S. argyrostoma “measures” night length with a “clock” of the external coincidence type. However, N. vitripennis responds to seasonal changes in photoperiod with an internal coincidence device involving both “dawn” and “dusk” oscillators. Other species may show properties of both external and internal coincidence. Although the precepts of external coincidence have been well formulated and supported experimentally, those for internal coincidence remain obscure.  相似文献   

20.
The influence of light upon behavior of Biomphalaria glabrata was investigated in snails submitted for 48 h to one of the following regimes: normal light cycle, continuous darkness, continuous light. Time-lapse cinematography was used to provide data about snail locomotor activity in response to (a) continuous light or darkness; (b) light or dark phases; (c) light transitions. Snails were significantly less active under continuous light than under continuous or intermittent darkness. Under the normal light cycle, the activity rate was significantly higher in the dark than in the light. Changes from light to dark corresponded to increases in the activity rate which persisted long afterwards. No significant variation in activity occurred upon changes from dark to light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号