首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
ST1710, a member of the multiple antibiotic resistance regulator (MarR) family of regulatory proteins in bacteria and archaea, plays important roles in development of antibiotic resistance, a global health problem. Here, we present the crystal structure of ST1710 from Sulfolobus tokodaii strain 7 complexed with salicylate, a well-known inhibitor of MarR proteins and the ST1710 complex with its promoter DNA, refined to 1.8 and 2.10 Å resolutions, respectively. The ST1710–DNA complex shares the topology of apo-ST1710 and MarR proteins, with each subunit containing a winged helix-turn-helix (wHtH) DNA binding motif. Significantly large conformational changes occurred upon DNA binding and in each of the dimeric monomers in the asymmetric unit of the ST1710–DNA complex. Conserved wHtH loop residues interacting with the bound DNA and mutagenic analysis indicated that R89, R90 and K91 were important for DNA recognition. Significantly, the bound DNA exhibited a new binding mechanism.  相似文献   

7.
8.
The multidrug efflux pump MepA is a major contributor to multidrug resistance in Staphylococcus aureus. MepR, a member of the multiple antibiotic resistance regulator (MarR) family, represses mepA and its own gene. Here, we report the structure of a MepR–mepR operator complex. Structural comparison of DNA-bound MepR with ‘induced’ apoMepR reveals the large conformational changes needed to allow the DNA-binding winged helix-turn-helix motifs to interact with the consecutive major and minor grooves of the GTTAG signature sequence. Intriguingly, MepR makes no hydrogen bonds to major groove nucleobases. Rather, recognition-helix residues Thr60, Gly61, Pro62 and Thr63 make sequence-specifying van der Waals contacts with the TTAG bases. Removing these contacts dramatically affects MepR–DNA binding activity. The wings insert into the flanking minor grooves, whereby residue Arg87, buttressed by Asp85, interacts with the O2 of T4 and O4′ ribosyl oxygens of A23 and T4. Mutating Asp85 and Arg87, both conserved throughout the MarR family, markedly affects MepR repressor activity. The His14′:Arg59 and Arg10′:His35:Phe108 interaction networks stabilize the DNA-binding conformation of MepR thereby contributing significantly to its high affinity binding. A structure-guided model of the MepR–mepA operator complex suggests that MepR dimers do not interact directly and cooperative binding is likely achieved by DNA-mediated allosteric effects.  相似文献   

9.
The Escherichia coli catabolite gene activator protein (CAP) is a helix-turn-helix motif sequence-specific DNA binding protein. CAP contains a unique solvent-accessible cysteine residue at amino acid 10 of the helix-turn-helix motif. In published work, we have constructed a prototype semi-synthetic site-specific DNA cleavage agent from CAP by use of cysteine-specific chemical modification to incorporate a nucleolytic chelator-metal complex at amino acid 10 of the helix-turn-helix motif [Ebright, R., Ebright, Y., Pendergrast, P.S. and Gunasekera, A., Proc. Natl. Acad. Sci. USA 87, 2882-2886 (1990)]. Construction of second-generation semi-synthetic site-specific DNA cleavage agents from CAP requires the construction of derivatives of CAP having unique solvent-accessible cysteine residues at sites within CAP other than amino acid 10 of the helix-turn-helix motif. In the present work, we have constructed and characterized two derivatives of CAP having no solvent-accessible cysteine residues: [Ser178]CAP and [Leu178]CAP. In addition, in the present work, we have constructed and characterized one derivative of CAP having a unique solvent-accessible cysteine residue at amino acid 2 of the helix-turn-helix motif: [Cys170;Ser178]CAP.  相似文献   

10.
11.
12.
Bacillus subtilis OhrR is the prototype for the one-Cys family of organic peroxide-sensing regulatory proteins. Mutational analyses indicate that the high sensitivity of the active site cysteine (C15) to peroxidation requires three Tyr residues. Y29 and Y40 from the opposing subunit of the functional dimer hydrogen bond with the reactive Cys thiolate, and substitutions at these positions reduce or eliminate the ability of OhrR to respond to organic peroxides. Y19 is also critical for peroxide sensing, and the Ala substitution mutant (OhrR Y19A) is less susceptible to oxidation at the active site C15 in vivo. The Y19A protein also displays decreased sensitivity to peroxide-mediated oxidation in vitro. Y19 is in van der Waals contact with two residues critical for protein function, F16 and R23. The latter residue makes critical contact with the DNA backbone in the OhrR-operator complex. These results indicate that the high sensitivity of the OhrR C15 residue to oxidation requires interactions with the opposed Tyr residues. Oxidative modification of C15 likely disrupts the C15-Y29'-Y40' hydrogen bond network and thereby initiates conformational changes that reduce the ability of OhrR to bind to its operator site.  相似文献   

13.
14.
15.
We have developed a simple procedure to incorporate an EDTA-metal complex at a rationally selected site within a full-length protein. Our procedure has two steps: In step 1, we use site-directed mutagenesis to introduce a unique solvent-accessible cysteine residue at the site of interest. In step 2, we derivatize the resulting protein with S-(2-pyridylthio)cysteaminyl-EDTA-metal, a novel aromatic disulfide derivative of EDTA-metal. We have used this procedure to incorporate an EDTA-iron complex at amino acid 2 of the helix-turn-helix motif of each of two helix-turn-helix motif sequence-specific DNA binding proteins, catabolite gene activator protein (CAP) and Cro, and we have analyzed EDTA-iron-mediated DNA affinity cleavage by the resulting protein derivatives. The CAP derivative cleaves DNA at base pair 2 of the DNA half-site in the protein-DNA complex, and the Cro derivative cleaves DNA at base pairs -3 to 5 of the DNA half-site in the protein-DNA complex. We infer that amino acid 2 of the helix-turn-helix motif of CAP is close to base pair 2 of the DNA half-site in the CAP-DNA complex in solution and that amino acid 2 of the helix-turn-helix motif of Cro is close to base pairs -3 to 5 of the DNA half-site in the Cro-DNA complex in solution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
18.
19.
20.
The Escherichia coli marRAB operon specifies two regulatory proteins, MarR (which represses) and MarA (which activates expression of the operon). The latter controls expression of multiple other chromosomal genes implicated in cell physiology, multiple drug resistance and virulence. Using randomly cloned E. coli DNA fragments in the bacterial adenylate cyclase two-hybrid system, we found that transketolase A (TktA) interacts with MarR. Purified (6H)-TktA immobilized on NiNTA resin-bound MarR. Overexpression or deletion of tktA showed that TktA interfered with MarR repression of the marRAB operon. Deletion of tktA increased antibiotic and oxidative stress susceptibilities, while its overexpression decreased them. Hydrogen peroxide induced tktA at 1 h treatment, while an increase in marRAB expression occurred only after 3 h exposure. This increase was dependent on the presence of tktA. Two MarR mutations which eliminated MarR binding to the marRAB operator and one which decreased dimerization of MarR had no effect on MarR interaction with TktA in the two-hybrid system. However, the interaction was disrupted by one of the three tested superrepressor mutant MarR proteins known to increase MarR binding to DNA. TktA inhibition of repression by MarR demonstrates a previously unrecognized level of control of the expression of marRAB operon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号