首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have isolated phytochrome B (phyB) and phyC mutants from rice (Oryza sativa) and have produced all combinations of double mutants. Seedlings of phyB and phyB phyC mutants exhibited a partial loss of sensitivity to continuous red light (Rc) but still showed significant deetiolation responses. The responses to Rc were completely canceled in phyA phyB double mutants. These results indicate that phyA and phyB act in a highly redundant manner to control deetiolation under Rc. Under continuous far-red light (FRc), phyA mutants showed partially impaired deetiolation, and phyA phyC double mutants showed no significant residual phytochrome responses, indicating that not only phyA but also phyC is involved in the photoperception of FRc in rice. Interestingly, the phyB phyC double mutant displayed clear R/FR reversibility in the pulse irradiation experiments, indicating that both phyA and phyB can mediate the low-fluence response for gene expression. Rice is a short-day plant, and we found that mutation in either phyB or phyC caused moderate early flowering under the long-day photoperiod, while monogenic phyA mutation had little effect on the flowering time. The phyA mutation, however, in combination with phyB or phyC mutation caused dramatic early flowering.  相似文献   

3.
4.
The interactions of phytochrome A (phyA), phytochrome B1 (phyB1) and phytochrome B2 (phyB2) in light-dependent shoot regeneration from the hypocotyl of tomato was analysed using all eight possible homozygous allelic combinations of the null mutants. The donor plants were pre-grown either in the dark or under red or far-red light for 8 days after sowing; thereafter hypocotyl segments (apical, middle and basal portions) were transferred onto hormone-free medium for culture under different light qualities. Etiolated apical segments cultured in vitro under white light showed a very high frequency of regeneration for all of the genotypes tested besides phyB1phyB2, phyAphyB1 and phyAphyB1phyB2 mutants. Evidence is provided of a specific interference of phyB2 with phyA-mediated HIR to far-red and blue light in etiolated explants. Pre-treatment of donor plants by growth under red light enhanced the competence of phyB1phyB2, phyAphyB1 and phyAphyB1phyB2 mutants for shoot regeneration, whereas pre-irradiation with far-red light enhanced the frequency of regeneration only in the phyAphyB1 mutant. Multiple phytochromes are involved in red light- and far-red light-dependent acquisition of competence for shoot regeneration. The position of the segments along the hypocotyl influenced the role of the various phytochromes and the interactions between them. The culture of competent hypocotyl segments under red, far-red or blue light reduced the frequency of explants forming shoots compared to those cultured under white light, with different genotypes having different response patterns.Abbreviations HIR: High irradiance response - LFR: Low fluence response - Pfr: Far-red absorbing form of phytochrome - phyA: Phytochrome A - phyB1: Phytochrome B1 - phyB2: Phytochrome B2 - phyA(B1, B2): Phytochrome mutant deficient in phyA (B1, B2) - phyAphyB1(B1B2,AB2): Double phytochrome mutant deficient in phyA and phyB1(B1, B2) - phyAphyB1phyB2: Triple mutant deficient in phyA, phyB1 and phyB2 - VLFR: Very low fluence response - WT: Wild-type tomato Communicated by R. Reski  相似文献   

5.
6.
7.
8.
Huq E  Quail PH 《The EMBO journal》2002,21(10):2441-2450
Plants sense and respond to red and far-red light using the phytochrome (phy) family of photoreceptors. However, the mechanism of light signal transduction is not well defined. Here, we report the identification of a new mutant Arabidopsis locus, srl2 (short under red-light 2), which confers selective hypersensitivity to continuous red, but not far-red, light. This hypersensitivity is eliminated in srl2phyB, but not srl2phyA, double mutants, indicating that this locus functions selectively and negatively in phyB signaling. The SRL2 gene encodes a bHLH factor, designated PIF4 (phytochrome-interacting factor 4), which binds selectively to the biologically active Pfr form of phyB, but has little affinity for phyA. Despite its hypersensitive morphological phenotype, the srl2 mutant displays no perturbation of light-induced expression of marker genes for chloroplast development. These data suggest that PIF4 may function specifically in a branch of the phyB signaling network that regulates a subset of genes involved in cell expansion. Consistent with this proposal, PIF4 localizes to the nucleus and can bind to a G-box DNA sequence motif found in various light-regulated promoters.  相似文献   

9.
Photometric analysis of chloroplast movements in various phytochrome (phy) mutants of Arabidopsis showed that phyA, B, and D are not required for chloroplast movements because blue light (BL)-dependent chloroplast migration still occurs in these mutants. However, mutants lacking phyA or phyB showed an enhanced response at fluence rates of BL above 10 micromol m-2 s-1. Overexpression of phyA or phyB resulted in an enhancement of the low-light response. Analysis of chloroplast movements within the range of BL intensities in which the transition between the low- and high-light responses occur (1.5-15 micromol m-2 s-1) revealed a transient increase in light transmittance through leaves, indicative of the high-light response, followed by a decrease in transmittance to a value below that measured before the BL treatment, indicative of the low-light response. A biphasic response was not observed for phyABD leaves exposed to the same fluence rate of BL, suggesting that phys play a role in modulating the transition between the low- and high-light chloroplast movement responses of Arabidopsis.  相似文献   

10.
11.
Phytochrome A (phyA) and phytochrome B (phyB) share the control of many processes but little is known about mutual signaling regulation. Here, we report on the interactions between phyA and phyB in the control of the activity of an Lhcb1*2 gene fused to a reporter, hypocotyl growth and cotyledon unfolding in etiolated Arabidopsis thaliana. The very-low fluence responses (VLFR) induced by pulsed far-red light and the high-irradiance responses (HIR) observed under continuous far-red light were absent in the phyA and phyA phyB mutants, normal in the phyB mutant, and reduced in the fhy1 mutant that is defective in phyA signaling. VLFR were also impaired in Columbia compared to Landsberg erecta. The low-fluence responses (LFR) induced by red-light pulses and reversed by subsequent far-red light pulses were small in the wild type, absent in phyB and phyA phyB mutants but strong in the phyA and fhy1 mutants. This indicates a negative effect of phyA and FHY1 on phyB-mediated responses. However, a pre-treatment with continuous far-red light enhanced the LFR induced by a subsequent red-light pulse. This enhancement was absent in phyA, phyB, or phyA phyB and partial in fhy1. The levels of phyB were not affected by the phyA or fhy1 mutations or by far-red light pre-treatments. We conclude that phyA acting in the VLFR mode (i.e. under light pulses) is antagonistic to phyB signaling whereas phyA acting in the HIR mode (i.e. under continuous far-red light) operates synergistically with phyB signaling, and that both types of interaction require FHY1.  相似文献   

12.
The role of phytochrome B2 (phyB2) in the control of photomorphogenesis in tomato (Solanum lycopersicum L.) has been investigated using recently isolated mutants carrying lesions in the PHYB2 gene. The physiological interactions of phytochrome A (phyA), phytochrome B1 (phyB1) and phyB2 have also been explored, using an isogenic series of all possible mutant combinations and several different phenotypic characteristics. The loss of phyB2 had a negligible effect on the development of white-light-grown wild-type or phyA-deficient plants, but substantially enhanced the elongated pale phenotype of the phyB1 mutant. This redundancy was also seen in the control of de-etiolation under continuous red light (R), where the loss of phyB2 had no detectable effect in the presence of phyB1. Under continuous R, phyA action was largely independent of phyB1 and phyB2 in terms of the control of hypocotyl elongation, but antagonized the effects of phyB1 in the control of anthocyanin synthesis, indicating that photoreceptors may interact differently to control different traits. Irradiance response curves for anthocyanin synthesis revealed that phyB1 and phyB2 together mediate all the detectable response to high-irradiance R, and, surprisingly, that the phyA-dependent low-irradiance component is also strongly reduced in the phyB1 phyB2 double mutant. This is not associated with a reduction in phyA protein content or responsiveness to continuous far-red light (FR), suggesting that phyB1 and phyB2 specifically influence phyA activity under low-irradiance R. Finally, the phyA phyB1 phyB2 triple mutant showed strong residual responsiveness to supplementary daytime FR, indicating that at least one of the two remaining phytochromes plays a significant role in tomato photomorphogenesis.  相似文献   

13.
An Arabidopsis mutant hypersensitive to red and far-red light signals.   总被引:17,自引:4,他引:13       下载免费PDF全文
A new mutant called psi2 (for phytochrome signaling) was isolated by screening for elevated activity of a chlorophyll a/b binding protein-luciferase (CAB2-LUC) transgene in Arabidopsis. This mutant exhibited hypersensitive induction of CAB1, CAB2, and the small subunit of ribulose-1,5-bisphosphate carboxylase (RBCS) promoters in the very low fluence range of red light and a hypersensitive response in hypocotyl growth in continuous red light of higher fluences. In addition, at high- but not low-light fluence rates, the mutant showed light-dependent superinduction of the pathogen-related protein gene PR-1a and developed spontaneous necrotic lesions in the absence of any pathogen. Expression of genes responding to various hormone and environmental stress pathways in the mutant was not significantly different from that of the wild type. Analysis of double mutants demonstrated that the effects of the psi2 mutation are dependent on both phytochromes phyA and phyB. The mutation is recessive and maps to the bottom of chromosome 5. Together, our results suggest that PSI2 specifically and negatively regulates both phyA and phyB phototransduction pathways. The induction of cell death by deregulated signaling pathways observed in psi2 is reminiscent of retinal degenerative diseases in animals and humans.  相似文献   

14.
Plant responses to red and far-red light are mediated by a family of photoreceptors called phytochromes. In Arabidopsis thaliana, there are genes encoding at least five phytochromes, and it is of interest to learn if the different phytochromes have overlapping or distinct functions. To address this question for two of the phytochromes in Arabidopsis, we have compared light responses of the wild type with those of a phyA null mutant, a phyB null mutant, and a phyA phyB double mutant. We have found that both phyA and phyB mutants have a deficiency in germination, the phyA mutant in far-red light and the phyB mutant in the dark. Furthermore, the germination defect caused by the phyA mutation in far- red light could be suppressed by a phyB mutation, suggesting that phytochrome B (PHYB) can have an inhibitory as well as a stimulatory effect on germination. In red light, the phyA phyB double mutant, but neither single mutant, had poorly developed cotyledons, as well as reduced red-light induction of CAB gene expression and potentiation of chlorophyll induction. The phyA mutant was deficient in sensing a flowering response inductive photoperiod, suggesting that PHYA participates in sensing daylength. In contrast, the phyB mutant flowered earlier than the wild type (and the phyA mutant) under all photoperiods tested, but responded to an inductive photoperiod. Thus, PHYA and PHYB appear to have complementary functions in controlling germination, seedling development, and flowering. We discuss the implications of these results for possible mechanisms of PHYA and PHYB signal transduction.  相似文献   

15.
Dual effect of phytochrome A on hypocotyl growth under continuous red light   总被引:5,自引:1,他引:4  
The role of phytochrome A in the control of hypocotyl growth under continuous red light (Rc) was investigated using phyA and phyB mutants of Arabidopsis thaliana, which lack phytochrome A (phyA) or phytochrome B (phyB), respectively, and transgenic seedlings of Nicotiana tabacum overexpressing Avena phyA, compared to the corresponding wild type (WT). In WT seedlings of A. thaliana, hypocotyl growth inhibition showed a biphasic response to the fluence rate of Rc, with a brake at 10?2μmol m?2 s?1. At equal total fluence rate, hourly pulses of red light caused slightly more inhibition than Rc. The response to very low fluences of continuous or pulsed red light was absent in the phyA and phyA phyB mutants and present in the phyB mutant. The second part of the response was steeper in the phyA mutant than in the WT but was absent in the phyB mutant. In WT tobacco the response to Rc was biphasic. Overexpression of Avena phyA enhanced the response only at very low fluence rates of Rc (< 10?2μmol m?2 s?1). In both species, the effect of hourly pulses of far-red light was similar to the maximum inhibition observed in the first phase of the response to Rc. Using reciprocity failure (i.e. higher inhibition under continuous than pulsed light) as the operational criterion, a ‘true’ high-irradiance reaction occurred under continuous far-red light but not under Rc or red plus far-red light mixtures. Native and overexpressed phyA are proposed to mediate very low fluence responses under Rc. In WT A. thaliana, this effect is counteracted by a negative action of phyA on phyB-mediated low-fluence responses.  相似文献   

16.
A genomic analysis of the shade avoidance response in Arabidopsis   总被引:1,自引:0,他引:1       下载免费PDF全文
Devlin PF  Yanovsky MJ  Kay SA 《Plant physiology》2003,133(4):1617-1629
Plants respond to the proximity of neighboring vegetation by elongating to prevent shading. Red-depleted light reflected from neighboring vegetation triggers a shade avoidance response leading to a dramatic change in plant architecture. These changes in light quality are detected by the phytochrome family of photoreceptors. We analyzed global changes in gene expression over time in wild-type, phyB mutant, and phyA phyB double mutant seedlings of Arabidopsis in response to simulated shade. Using pattern fitting software, we identified 301 genes as shade responsive with patterns of expression corresponding to one of various physiological response modes. A requirement for a consistent pattern of expression across 12 chips in this way allowed more subtle changes in gene expression to be considered meaningful. A number of previously characterized genes involved in light and hormone signaling were identified as shade responsive, as well as several putative, novel shade-specific signal transduction factors. In addition, changes in expression of genes in a range of pathways associated with elongation growth and stress responses were observed. The majority of shade-responsive genes demonstrated antagonistic regulation by phyA and phyB in response to shade following the pattern of many physiological responses. An analysis of promoter elements of genes regulated in this way identified conserved promoter motifs potentially important in shade regulation.  相似文献   

17.
In Arabidopsis thaliana, the cryptochrome (CRY) blue light photoreceptors and the phytochrome (phy) red/far-red light photoreceptors mediate a variety of light responses. COP1, a RING motif–containing E3 ubiquitin ligase, acts as a key repressor of photomorphogenesis. Production of stomata, which mediate gas and water vapor exchange between plants and their environment, is regulated by light and involves phyB and COP1. Here, we show that, in the loss-of-function mutants of CRY and phyB, stomatal development is inhibited under blue and red light, respectively. In the loss-of-function mutant of phyA, stomata are barely developed under far-red light. Strikingly, in the loss-of-function mutant of either COP1 or YDA, a mitogen-activated protein kinase kinase kinase, mature stomata are developed constitutively and produced in clusters in both light and darkness. CRY, phyA, and phyB act additively to promote stomatal development. COP1 acts genetically downstream of CRY, phyA, and phyB and in parallel with the leucine-rich repeat receptor-like protein TOO MANY MOUTHS but upstream of YDA and the three basic helix-loop-helix proteins SPEECHLESS, MUTE, and FAMA, respectively. These findings suggest that light-controlled stomatal development is likely mediated through a crosstalk between the cryptochrome-phytochrome-COP1 signaling system and the mitogen-activated protein kinase signaling pathway.  相似文献   

18.
19.
The role of phytochrome A (phyA) and phytochrome B (phyB) in phototropism was investigated by using the phytochrome-deficient mutants phyA-101 , phyB-1 and a phyA/phyB double mutant. The red-light-induced enhancement of phototropism, which is normally observed in wild-type seedlings, could not be detected in the phyA/phyB mutant at fluences of red light between 0.1 and 19 000 μmol m−2. The loss of phyB has been shown to have no apparent effect on enhancement, while the loss of phyA resulted in a loss of enhancement only in the low fluence range (Janoudi et al. 1997). The conclusions of the aforementioned study can now be modified based on the current results which indicate that phototropic enhancement in the high fluence range is mediated by either phyA or phyB, and that other phytochromes have no role in enhancement. First positive phototropism was unaffected in phyA-101 and phyB-1 However, the magnitude of first positive phototropism in the phyA/phyB mutant was significantly lower than that of the wild-type Landsberg parent. Thus, the presence of either phyA or phyB is required for normal expression of first positive phototropism. The time threshold for second positive phototropism is unaltered in the phyA-101 and phyB mutants. However, the time threshold in the phyA/phyB mutant is about 2 h, approximately six times that of the wild type. Finally, the magnitude of second positive phototropism in both phyA-101 and phyB-1 is diminished in comparison with the wild-type response. Thus, phyA and phyB, acting independently or in combination, regulate the magnitude of phototropic curvature and the time threshold for second positive phototropism. We conclude that the presence of phyA and phyB is required, but not sufficient, for the expression of normal phototropism.  相似文献   

20.
The cryptochrome 1 (cry1) photoreceptor is responsible for the majority of the inhibitory effect of blue light on hypocotyl elongation, but phytochrome photoreceptors also contribute to the response through a phenomenon known as coaction. In Arabidopsis thaliana the participation of phytochromes A and B (phyA and phyB) in the early phase of cry1 action was investigated by determining the effects of phyA, phyB and hy1 mutations on a cry1-dependent membrane depolarization, which is caused by the activation of plasma-membrane anion channels within seconds of blue light treatment. High-resolution growth measurements were also performed to determine the timing of the requirement for phytochrome in cry1-mediated growth inhibition, which is causally linked to the preceding anion-channel activation. A null mutation in PHYA impaired the membrane depolarization and prevented the early cry1-dependent phase of growth inhibition as effectively and with the same time course as mutations in CRY1. Thus, phyA is necessary for cry1/cry2 to activate anion channels within the first few seconds of blue light and to suppress hypocotyl elongation for at least 120 min. This finding furthers the notion of an intimate mechanistic association between the cry and phy receptors in mediating light responses. The absence of phyB did not affect the depolarization or growth inhibition during this time frame. Instead, double mutant analyses showed that the phyB mutation suppressed the early growth phenotypes of both phyA and cry1 seedlings. This result is consistent with the emerging view that the prevailing growth rate of a stem is a compromise between light-dependent inhibitory and promotive influences. It appears that phyB opposes the cry1/phyA-mediated inhibition by promoting growth during at least the first 120 min of blue light treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号