首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many insects find resources by means of the olfactory cues of general odors after learning. To evaluate behavioral responses to the odor of a particular chemical after learning with reward or punishment quantitatively, we developed a standardized odor-training method in the German cockroach, Blattella germanica (Linnaeus), an important urban pest species. A classical olfactory conditioning procedure for a preference test was modified to become applicable to a single odor, by which a (?)-menthol or vanillin odor was independently associated with sucrose (reward) or sodium chloride solution (punishment). The strength of the association with the odor was evaluated with the increase or decrease in visit frequencies to the odor source after olfactory conditioning. The frequency increased after (?)-menthol was presented with a reward, while it did not change with the rewarded vanillin odor. With both odors, the frequency decreased significantly after training with a punishment. These results indicate that cockroaches learn a single compound odor presented as a conditioned stimulus, although the association of the odor with a reward or punishment depends on the chemical. This olfactory conditioning method can not only facilitate the analysis of cockroach behavior elicited by a learned single chemical odor, but also quantify the potential attractiveness or repellency of the chemical after learning.  相似文献   

2.
In Southeast Asia the native honey bee species Apis cerana is often attacked by hornets (Vespa velutina), mainly in the period from April to November. During the co-evolution of these two species honey bees have developed several strategies to defend themselves such as learning the odors of hornets and releasing alarm components to inform other mates. However, so far little is known about whether and how honey bees modulate their olfactory learning in the presence of the hornet predator and alarm components of honey bee itself. In the present study, we test for associative olfactory learning of A. cerana in the presence of predator odors, the alarm pheromone component isopentyl acetate (IPA), or a floral odor (hexanal) as a control. The results show that bees can detect live hornet odors, that there is almost no association between the innately aversive hornet odor and the appetitive stimulus sucrose, and that IPA is less well associated with an appetitive stimulus when compared with a floral odor. In order to imitate natural conditions, e.g. when bees are foraging on flowers and a predator shows up, or alarm pheromone is released by a captured mate, we tested combinations of the hornet odor and floral odor, or IPA and floral odor. Both of these combinations led to reduced learning scores. This study aims to contribute to a better understanding of the prey-predator system between A. cerana and V. velutina.  相似文献   

3.
Discriminative classical conditioning of an olfactory avoidance response was demonstrated in the blowfly, Phormia regina.Learning indices were calculated as the fraction of flies avoiding the CS+ (conditioned stimulus paired with electric shock reinforcement) minus the fraction of flies avoiding the CS-(conditioned stimulus not paired with electric shock), averaged over two different groups of flies, in which reciprocal odors were used as the CS+. Avoidance responses to both odors presented simultaneously at a T-maze choice point yielded mean learning indices of zero for naive flies or pseudoconditioned (shock alone) or sensitized (odors alone) controls. In contrast, pairing an odor with electric shock produced a mean learning index significantly greater than zero. These results are similar to those reported for Drosophila melanogaster.Blow flies, however, showed much lower levels of associative learning than fruit flies.  相似文献   

4.
Olfactory processing of two odorants and their mixture was investigated in bumble bees Bombus terrestris using classical conditioning of the proboscis extension. In a standard procedure, workers were able to learn linalool, phenylacetaldehyde, and the mixture of these two components, with a similar level of response to these three stimuli. Thereafter, when we applied a differential conditioning procedure where one rewarded odorant was presented alternately against an unrewarded one, an asymmetrical discrimination between the two pure odors was found. Bumble bees performed well in the discriminative task when linalool was the rewarded stimulus and phenylacetaldehyde the unrewarded one, but they had difficulty learning phenylacetaldehyde if it was the rewarded odor in the symmetrical procedure. Indeed, unrewarded stimulations with linalool appeared to disrupt the learning of the alternative odor, possibly due to an innate biological meaning of linalool.  相似文献   

5.
What is the spatial and temporal nature of odor representations within primary olfactory networks at the threshold of an animal's ability to discriminate? Although this question is of central importance to olfactory neuroscience, it can only be answered in model systems where neural representations can be measured and discrimination thresholds between odors can be characterized. Here, we establish these thresholds for a panel of odors using a Pavlovian paradigm in the moth Manduca sexta. Moths were differentially conditioned to respond to one odor (CS+) but not another (CS-) using undiluted odorants to minimize salience-dependent learning effects. At 24 and 48 h postconditioning, moths were tested for the presence of a conditioned response (CR) with a blank, then the CS+ and CS- (pseudorandomly) across a 5-log step series of increasing concentration. Results identified discrimination thresholds and established that differential CRs to the CS+ and CS- increased with stimulus concentration. Next, 3 separate groups of moths were differentially conditioned at either one-log step below, at, or one log step above the identified discrimination threshold. At 24 and 48 h postconditioning, moths were tested sequentially with a blank, the concentration used for conditioning, and then undiluted odor. Conditioning at one log step below the discrimination threshold established a CR, indicating both stimulus detection and learning, but was insufficient to establish evidence of discrimination. Moths conditioned at the discrimination threshold were able to discriminate but only when stimulated with undiluted odors, indicating learning, but discrimination measures were hampered. When conditioned above the discrimination threshold, moths had no difficulty in discriminating. These results establish methods for psychophysical characterization of discrimination and indicate that differential conditioning at lowered concentrations biases threshold measures.  相似文献   

6.
Olfactory discrimination of structurally similar alcohols by cockroaches   总被引:2,自引:0,他引:2  
The capability of the cockroach Periplaneta americana to discriminate odors of structurally similar aliphatic alcohols was studied by using an operant conditioning paradigm. Cockroaches were trained to discriminate three odors: one odor associated with sucrose solution (reward) and two odors associated with NaCl solution (non-reward). After training, their odor preferences were tested by counting the number of visits to each odor source. We tested the capability of cockroaches to discriminate (1) three normal aliphatic alcohols with different numbers of carbon (1-pentanol, 1-hexanol and 1-octanol), (2) three C6 aliphatic alcohols (1-hexanol, 2-hexanol and trans-2-hexen-1-ol), (3) binary mixtures of two of these three alcohols and their components, and (4) 1-hexanol solution of three different concentrations (1, 10 and 100 micro g micro l(-1)). Cockroaches exhibited higher preferences for the odors associated with reward in these tests, and we therefore conclude that cockroaches can discriminate these odors. However, discrimination of 1-hexanol and trans-2-hexen-1-ol and their binary mixture was imperfect, in that some statistical tests suggested significant level of discrimination but other tests did not. In addition, the cockroaches learned to associate a 1-hexanol solution of the highest or lowest concentration with sucrose reward but failed to learn to associate 1-hexanol of an intermediate concentration with reward.  相似文献   

7.
The parasitic mite Varroa destructor influences flight behavior, orientation and returning success of forager honeybees (Apis mellifera) infested as adults. As impaired orientation toward the nest entrance might be due to deficiency in recognition and responsiveness to stimuli in the environment, we examined effects of V. destructor on sensory responsiveness, non-associative and associative learning of honey bee foragers by using proboscis extension reaction paradigm (PER). Although infested and uninfested workers were initially equally responsive to different concentrations of sugar water, we found differences in non-associative learning. In habituation, PER to repeated sugar stimulation of the antennae occurred faster in infested foragers compared to uninfested foragers. In sensitization, infested foragers showed a lower response to an odor stimulus following sugar stimulation than non-infested foragers. Differences in non-associative paradigms were more pronounced in bees with lower responsiveness to sucrose. In conditioning learning experiments, a significant reduction in proboscis extension response was found 1 min but not 12 min after a single conditioning trial indicating that V. destructor predominantly affects the non-associative components of learning and its underlying neural and molecular processes. Jasna Kralj and Axel Brockmann have contributed equally to this study.  相似文献   

8.
Summary By changing the conditioned discrimination paradigm of Quinn et al. (1974) from an instrumental procedure to a classical (Pavlovian) one, we have demonstrated strong learning in type flies. About 150 flies were sequestered in a closed chamber and trained by explosing them sequentially to two odors in air currents. Flies received twelve electric shock pulses in the presence of the first odor (CS+) but not in the presence of the second odor (CS–). To test for conditioned avoidance responses, flies were transported to a Tmaze choice point, between converging currents of the two odors. Typically, 95% of trained flies avoided the shock-associated odor (CS+).Acquisition of learning was a function of the number of shock pulses received during CS+ presentation and was asymptotic within one training cycle. Conditioned avoidance increased with increasing shock intensity or odor concentration and was very resistant to extinction. Learning was best when CS+ presentations overlap shock (delay conditioning) and then decreased with increasing CS-US interstimulus intervals. Shocking flies immediately before CS+ presentation (backward conditioning) produced no learning. Nonassociative control procedures (CS Alone, US Alone and Explicitly Unpaired) produced slight decreases in avoidance responses, but these affected both odors equally and did not alter our associative learning index (A).Memory in wild-type flies decayed gradually over the first seven hours after training and still was present 24 h later. The mutantsamnesiac, rutabaga anddunce showed appreciable learning acquisition, but their memories decayed very rapidly during the first 30 min. After this, the rates of decay slowed sharply; conditioned avoidance still was measurable at least three hours after training.Abbreviations OCT 3-octanol - MCH 4-methylcyclohexanol - C-S Canton-Special - CS conditioned stimulus - US unconditioned stimulus  相似文献   

9.
Social insect colonies operate without central control or any global assessment of what needs to be done by workers. Colony organization arises from the responses of individuals to local cues. Red harvester ants (Pogonomyrmex barbatus) regulate foraging using interactions between returning and outgoing foragers. The rate at which foragers return with seeds, a measure of food availability, sets the rate at which outgoing foragers leave the nest on foraging trips. We used mimics to test whether outgoing foragers inside the nest respond to the odor of food, oleic acid, the odor of the forager itself, cuticular hydrocarbons, or a combination of both with increased foraging activity. We compared foraging activity, the rate at which foragers passed a line on a trail, before and after the addition of mimics. The combination of both odors, those of food and of foragers, is required to stimulate foraging. The addition of blank mimics, mimics coated with food odor alone, or mimics coated with forager odor alone did not increase foraging activity. We compared the rates at which foragers inside the nest interacted with other ants, blank mimics, and mimics coated with a combination of food and forager odor. Foragers inside the nest interacted more with mimics coated with combined forager/seed odors than with blank mimics, and these interactions had the same effect as those with other foragers. Outgoing foragers inside the nest entrance are stimulated to leave the nest in search of food by interacting with foragers returning with seeds. By using the combined odors of forager cuticular hydrocarbons and of seeds, the colony captures precise information, on the timescale of seconds, about the current availability of food.  相似文献   

10.
A recent study showed that the stingless bee Melipona quadrifasciata could learn to discriminate odors in a classical conditioning of proboscis extension response (PER). Here we used this protocol to investigate the ability of these bees to use olfactory information obtained within the colony in an experimental context: the PER paradigm. We compared their success in solving a classical differential conditioning depending on the previous olfactory experiences received inside the nest. We found that M. quadrifasciata bees are capable of transferring the food-odor information acquired in the colony to a differential conditioning in the PER paradigm. Bees attained higher discrimination levels when they had previously encountered the rewarded odor associated to food inside the hive. The increase in the discrimination levels, however, was in some cases unspecific to the odor used indicating a certain degree of generalization. The influence of the food scent offered at a field feeder 24 h before the classical conditioning could also be seen in the discrimination attained by the foragers in the PER setup, detecting the presence of long-term memory. Moreover, the improved performance of recruited bees in the PER paradigm suggests the occurrence of social learning of nectar scents inside the stingless bees’ hives.  相似文献   

11.
This video demonstrates a technique to establish the presence of a normally functioning olfactory system in a mouse. The test helps determine whether the mouse can discriminate between non-social odors and social odors, whether the mouse habituates to a repeatedly presented odor, and whether the mouse demonstrates dishabituation when presented with a novel odor. Since many social behavior tests measure the experimental animal’s response to a familiar or novel mouse, false positives can be avoided by establishing that the animals can detect and discriminate between social odors. There are similar considerations in learning tests such as fear conditioning that use odor to create a novel environment or olfactory cues as an associative stimulus. Deficits in the olfactory system would impair the ability to distinguish between contexts and to form an association with an olfactory cue during fear conditioning. In the odor habitation/dishabituation test, the mouse is repeatedly presented with several odors. Each odor is presented three times for two minutes. The investigator records the sniffing time directed towards the odor as the measurement of olfactory responsiveness. A typical mouse shows a decrease in response to the odor over repeated presentations (habituation). The experimenter then presents a novel odor that elicits increased sniffing towards the new odor (dishabituation). After repeated presentation of the novel odor the animal again shows habituation. This protocol involves the presentation of water, two or more non-social odors, and two social odors. In addition to reducing experimental confounds, this test can provide information on the function of the olfactory systems of new knockout, knock-in, and conditional knockout mouse lines.  相似文献   

12.
Honeybees of different ages and reproductive castes cohabit in the hive where they are exposed to many odors that might affect associative learning. Our aim was to analyze the role of odors pre-exposed as volatiles on appetitive learning in honeybees of different ages and search for their long-term effect both under natural and laboratory conditions. By evaluating memory acquisition and retention through a differential proboscis extension response conditioning, we found that hive-exposed odors offered as a reinforced conditioned stimulus during training promoted a learning-reduced effect [latent inhibition (LI)]. On the other hand, no effect was found when the non-reinforced conditioned stimulus was pre-exposed. The LI effect varied with the odor identity. However, only slight differences were found with the age of the bees. Exposure-conditioning intervals longer than 24 h did not show an LI effect unless the odor concentration was increased or exposure was prolonged. Our results show that pre-exposed volatiles could either reduce learning performance, if this odor is later associated with food, or be irrelevant in the case that alternative scented resources circulate within the colony. The differential effects found according to the olfactory exposure characteristics could strongly influence the propagation of chemosensory information within the hive.  相似文献   

13.
Drosophila have been used in classical conditioning experiments for over 40 years, thus greatly facilitating our understanding of memory, including the elucidation of the molecular mechanisms involved in cognitive diseases1-7. Learning and memory can be assayed in larvae to study the effect of neurodevelopmental genes8-10 and in flies to measure the contribution of adult plasticity genes1-7. Furthermore, the short lifespan of Drosophila facilitates the analysis of genes mediating age-related memory impairment5,11-13. The availability of many inducible promoters that subdivide the Drosophila nervous system makes it possible to determine when and where a gene of interest is required for normal memory as well as relay of different aspects of the reinforcement signal3,4,14,16.Studying memory in adult Drosophila allows for a detailed analysis of the behavior and circuitry involved and a measurement of long-term memory15-17. The length of the adult stage accommodates longer-term genetic, behavioral, dietary and pharmacological manipulations of memory, in addition to determining the effect of aging and neurodegenerative disease on memory3-6,11-13,15-21.Classical conditioning is induced by the simultaneous presentation of a neutral odor cue (conditioned stimulus, CS+) and a reinforcement stimulus, e.g., an electric shock or sucrose, (unconditioned stimulus, US), that become associated with one another by the animal1,16. A second conditioned stimulus (CS-) is subsequently presented without the US. During the testing phase, Drosophila are simultaneously presented with CS+ and CS- odors. After the Drosophila are provided time to choose between the odors, the distribution of the animals is recorded. This procedure allows associative aversive or appetitive conditioning to be reliably measured without a bias introduced by the innate preference for either of the conditioned stimuli. Various control experiments are also performed to test whether all genotypes respond normally to odor and reinforcement alone.  相似文献   

14.
Mushroom bodies are central brain structures and essentially involved in insect olfactory learning. Within the mushroom bodies γ-aminobutyric acid (GABA)-immunoreactive feedback neurons are the most prominent neuron group. The plasticity of inhibitory neural activity within the mushroom body was investigated by analyzing modulations of odor responses of feedback neurons during olfactory learning in vivo. In the honeybee, Apis mellifera, feedback neurons were intracellularly recorded at their neurites. They produced complex patterns of action potentials without experimental stimulation. Summating postsynaptic potentials indicate that their synaptic input region lies within the lobes. Odor and antennal sucrose stimuli evoked excitatory phasic-tonic responses. Individual neurons responded to various odors; responses of different neurons to the same odor were highly variable. Response modulations were determined by comparing odor responses of feedback neurons before and after one-trial olfactory conditioning or sensitisation. Shortly after pairing an odor stimulus with a sucrose reward, odor-induced spike activity of feedback neurons decreased. Repeated odor stimulations alone, equally spaced as in the conditioning experiment, did not affect the odor-induced excitation. A single sensitisation trial also did not alter odor responses. These findings indicate that the level of odor-induced inhibition within the mushroom bodies is specifically modulated by experience. Accepted: 9 September 1999  相似文献   

15.
In Pavlovian conditioning, animals learn to associate initially neutral stimuli with positive or negative outcomes, leading to appetitive and aversive learning respectively. The honeybee (Apis mellifera) is a prominent invertebrate model for studying both versions of olfactory learning and for unraveling the influence of genotype. As a queen bee mates with about 15 males, her worker offspring belong to as many, genetically-different patrilines. While the genetic dependency of appetitive learning is well established in bees, it is not the case for aversive learning, as a robust protocol was only developed recently. In the original conditioning of the sting extension response (SER), bees learn to associate an odor (conditioned stimulus - CS) with an electric shock (unconditioned stimulus - US). This US is however not a natural stimulus for bees, which may represent a potential caveat for dissecting the genetics underlying aversive learning. We thus first tested heat as a potential new US for SER conditioning. We show that thermal stimulation of several sensory structures on the bee’s body triggers the SER, in a temperature-dependent manner. Moreover, heat applied to the antennae, mouthparts or legs is an efficient US for SER conditioning. Then, using microsatellite analysis, we analyzed heat sensitivity and aversive learning performances in ten worker patrilines issued from a naturally inseminated queen. We demonstrate a strong influence of genotype on aversive learning, possibly indicating the existence of a genetic determinism of this capacity. Such determinism could be instrumental for efficient task partitioning within the hive.  相似文献   

16.
To trigger innate behavior, sensory neural networks are pre-tuned to extract biologically relevant stimuli. Many male-female or insect-plant interactions depend on this phenomenon. Especially communication among individuals within social groups depends on innate behaviors. One example is the efficient recruitment of nest mates by successful bumblebee foragers. Returning foragers release a recruitment pheromone in the nest while they perform a ‘dance’ behavior to activate unemployed nest mates. A major component of this pheromone is the sesquiterpenoid farnesol. How farnesol is processed and perceived by the olfactory system, has not yet been identified. It is much likely that processing farnesol involves an innate mechanism for the extraction of relevant information to trigger a fast and reliable behavioral response. To test this hypothesis, we used population response analyses of 100 antennal lobe (AL) neurons recorded in alive bumblebee workers under repeated stimulation with four behaviorally different, but chemically related odorants (geraniol, citronellol, citronellal and farnesol). The analysis identified a unique neural representation of the recruitment pheromone component compared to the other odorants that are predominantly emitted by flowers. The farnesol induced population activity in the AL allowed a reliable separation of farnesol from all other chemically related odor stimuli we tested. We conclude that the farnesol induced population activity may reflect a predetermined representation within the AL-neural network allowing efficient and fast extraction of a behaviorally relevant stimulus. Furthermore, the results show that population response analyses of multiple single AL-units may provide a powerful tool to identify distinct representations of behaviorally relevant odors.  相似文献   

17.
Flumethrin has been widely used as an acaricide for the control of Varroa mites in commercial honeybee keeping throughout the world for many years. Here we test the mortality of the Asian honeybee Apis cerana cerana after treatment with flumethrin. We also ask (1) how bees react to the odor of flumethrin, (2) whether its odor induces an innate avoidance response, (3) whether its taste transmits an aversive reinforcing component in olfactory learning, and (4) whether its odor or taste can be associated with reward in classical conditioning. Our results show that flumethrin has a negative effect on Apis ceranàs lifespan, induces an innate avoidance response, acts as a punishing reinforcer in olfactory learning, and interferes with the association of an appetitive conditioned stimulus. Furthermore flumethrin uptake within the colony reduces olfactory learning over an extended period of time.  相似文献   

18.
Tetragonisca angustula stingless bees are considered as solitary foragers that lack specific communication strategies. In their orientation towards a food source, these social bees use chemical cues left by co-specifics and the information obtained in previous foraging trips by the association of visual stimuli with the food reward. Here, we investigated their ability to learn the association between odors and reward (sugar solution) and the effect on learning of previous encounters with scented food either inside the hive or during foraging. During food choice experiments, when the odor associated with the food was encountered at the feeding site, the bees’ choice is biased to the same odor afterwards. The same was not the case when scented food was placed inside the nest. We also performed a differential olfactory conditioning of proboscis extension response with this species for the first time. Inexperienced bees did not show significant discrimination levels. However, when they had had already interacted with scented food inside the hive, they were able to learn the association with a specific odor. Possible olfactory information circulation inside the hive and its use in their foraging strategies is discussed.  相似文献   

19.
Experiments investigated a Pavlovian conditioning situation where the presence and absence of the stimulus are reversed temporally with respect to the presentation of a reward. Instead of a conditioned stimulus (e.g. odor) signaling the presence of a reward, the stimulus (e.g. odor) is present in the environment except just prior to the presence of the reward. Thus, the absence of the stimulus, or offset of the stimulus (e.g. absence of odor), serves as a conditioned stimulus and is the reward cue. Honey bees (Apis mellifera) were used as a model invertebrate system, and the proboscis‐conditioning paradigm was used as the test procedure. Using both simple Pavlovian conditioning and discrimination‐learning protocols, animals learned to associate the onset of an odor as conditioned stimuli when paired with a sucrose reward. They could also learn to associate the onset of a puff of air with a sucrose reward. However, bees could not associate the offset of an order stimulus with the presentation of a sucrose reward in either a simple conditioning or a discrimination‐learning situation. These results support the model that a very different cognitive architecture is used by invertebrates to deal with certain environmental situations, including signaled avoidance.  相似文献   

20.
Animals need to associate different environmental stimuli with each other regardless of whether they temporally overlap or not. Drosophila melanogaster displays olfactory trace conditioning, where an odor is followed by electric shock reinforcement after a temporal gap, leading to conditioned odor avoidance. Reversing the stimulus timing in olfactory conditioning results in the reversal of memory valence such that an odor that follows shock is later on approached (i.e. relief conditioning). Here, we explored the effects of stimulus timing on memory in another sensory modality, using a visual conditioning paradigm. We found that flies form visual memories of opposite valence depending on stimulus timing and can associate a visual stimulus with reinforcement despite being presented with a temporal gap. These results suggest that associative memories with non-overlapping stimuli and the effect of stimulus timing on memory valence are shared across sensory modalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号