首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recording of four-dimensional (4D) spectra for proteins in the solid state has opened new avenues to obtain virtually complete resonance assignments and three-dimensional (3D) structures of proteins. As in solution state NMR, the sampling of three indirect dimensions leads per se to long minimal measurement time. Furthermore, artifact suppression in solid state NMR relies primarily on radio-frequency pulse phase cycling. For an n-step phase cycle, the minimal measurement times of both 3D and 4D spectra are increased n times. To tackle the associated ‘sampling problem’ and to avoid sampling limited data acquisition, solid state G-Matrix Fourier Transform (SS GFT) projection NMR is introduced to rapidly acquire 3D and 4D spectral information. Specifically, (4,3)D (HA)CANCOCX and (3,2)D (HACA)NCOCX were implemented and recorded for the 6 kDa protein GB1 within about 10% of the time required for acquiring the conventional congeners with the same maximal evolution times and spectral widths in the indirect dimensions. Spectral analysis was complemented by comparative analysis of expected spectral congestion in conventional and GFT NMR experiments, demonstrating that high spectral resolution of the GFT NMR experiments enables one to efficiently obtain nearly complete resonance assignments even for large proteins.  相似文献   

2.
We present the quantification of backbone amide hydrogen-deuterium exchange rates (HDX) for immobilized proteins. The experiments make use of the deuterium isotope effect on the amide nitrogen chemical shift, as well as on proton dilution by deuteration. We find that backbone amides in the microcrystalline α-spectrin SH3 domain exchange rather slowly with the solvent (with exchange rates negligible within the individual 15N–T 1 timescales). We observed chemical exchange for 6 residues with HDX exchange rates in the range from 0.2 to 5 s−1. Backbone amide 15N longitudinal relaxation times that we determined previously are not significantly affected for most residues, yielding no systematic artifacts upon quantification of backbone dynamics (Chevelkov et al. 2008b). Significant exchange was observed for the backbone amides of R21, S36 and K60, as well as for the sidechain amides of N38, N35 and for W41ε. These residues could not be fit in our previous motional analysis, demonstrating that amide proton chemical exchange needs to be considered in the analysis of protein dynamics in the solid-state, in case D2O is employed as a solvent for sample preparation. Due to the intrinsically long 15N relaxation times in the solid-state, the approach proposed here can expand the range of accessible HDX rates in the intermediate regime that is not accessible so far with exchange quench and MEXICO type experiments.  相似文献   

3.
The extremely chemically resistant component of the cell wall of spores, pollens, and some microorganisms, sporopollenin, is generally accepted to be derived from carotenoids or carotenoid esters. However, we report here that 13C NMR analyses of sporopollenin from several sources shows that this widely held view is incorrect, with one possible exception. Sporopollenin is not a unique substance but rather a series of related biopolymers derived from largely saturated precursors such as fatty acids. The biopolymers contain widely varying amounts of oxygen in the form of ether, hydroxyl, carboxylic acid, ester, and ketone groups.  相似文献   

4.
It is demonstrated that the spatial proximity of 1H nuclei in hydrogen bonded base-pairs in RNAs can be conveniently mapped via magic angle spinning solid state NMR experiments involving proton spin diffusion driven chemical shift correlation of low gamma nuclei such as the imino and amino nitrogens of nucleic acid bases. As different canonical and non-canonical base-pairing schemes encountered in nucleic acids are characterised by topologically different networks of proton dipolar couplings, different base-pairing schemes lead to characteristic cross-peak intensity patterns in such correlation spectra. The method was employed in a study of a 100 kDa RNA composed of 97 CUG repeats, or (CUG)97 that has been implicated in the neuromuscular disease myotonic dystrophy. 15N–15N chemical shift correlation studies confirm the presence of Watson–Crick GC base pairs in (CUG)97.  相似文献   

5.
Hu HY  Li Q  Cheng HC  Du HN 《Biopolymers》2001,62(1):15-21
Cross beta-sheet structure formation and abnormal aggregation of proteins are thought to be pathological characteristics of some neurodegenerative disorders. To investigate the novel structural transformation and aggregation, the solid-state secondary structures of some proteins and peptides associated in thin films were determined by circular dichroism spectroscopy. Insulin, lysozyme, DsbA protein, luciferase, and ovalbumin peptide fall into one group; they show no or slight structural rearrangement from solution to the solid state. Another group, including bovine serum albumin, ovalbumin, alpha-synuclein, and plasminogen activator inhibitor-1 (PAIRC) peptide, undergo structural transformation with an increase of beta-sheet structure in the solid state. The beta-sheet formation of PAIRC peptide may reflect the structural transformation of the serpin reactive center that is relevant to the inhibitor activity. The beta-sheet structure of alpha-synuclein in the solid state may correspond to the amyloid-like aggregates, which are implicated in the pathogenesis of some neurodegenerative diseases.  相似文献   

6.
High resolution nuclear magnetic resonance (NMR) spectroscopy is the only method available for determining the three-dimensional structures of peptides and proteins in solution at atomic resolution. This article deals with a range of practical considerations associated with such studies, including sample preparation, instrumental setup, one- and two-dimensional NMR methods, interpretation of spectral data, and structure calculations.  相似文献   

7.
Practical considerations in refolding proteins from inclusion bodies   总被引:13,自引:0,他引:13  
Refolding of proteins from inclusion bodies is affected by several factors, including solubilization of inclusion bodies by denaturants, removal of the denaturant, and assistance of refolding by small molecule additives. We will review key parameters associated with (1) conformation of the protein solubilized from inclusion bodies, (2) change in conformation and flexibility or solubility of proteins during refolding upon reduction of denaturant concentration, and (3) the effect of small molecule additives on refolding and aggregation of the proteins.  相似文献   

8.
Starch is subjected to chemical treatments such as cross-linking or hydroxypropylation to meet the material requirements for food uses or controlled release in the pharmaceutical industries. In this work, two types of cross-linking formulations have been employed for the preparation of high amylose starch for use as an excipient for sustained drug release. The structural differences and chain dynamics of the modified starches in the dry and hydrated states have been compared by the use of variable contact time cross polarization-magic angle spinning solid state (13)C NMR spectroscopy.  相似文献   

9.
Abstract

Clock hour independent groups of young female rats received a series of 3 alternate day intra‐articular injections of methylprednisolone acetate. All rats lost body weight, but the change was minimal when the injections were given in the late afternoon (‐30.8 g) vs the night (‐42.4 g, P < .02). The data imply that methylprednisolone acetate, which is designed to be locally active in joint spaces, can be absorbed into the circulation and that the rate of absorption is subject to circadian control.  相似文献   

10.
The folding, structure and biological function of many proteins are inherently dynamic properties of the protein molecule. Often, the respective molecular processes are preserved upon protein crystallization, leading, in X-ray diffraction experiments, to a blurring of the electron density map and reducing the resolution of the derived structure. Nuclear magnetic resonance (NMR) is known to be an alternative method to study molecular structure and dynamics. We designed and built a probe for phosphorus solid state NMR that allows for the first time to study static properties as well as dynamic processes in single-crystals of a protein by NMR spectroscopy. The sensitivity achieved is sufficient to detect the NMR signal from individual phosphorus sites in a 0.3mm(3) size single-crystal of GTPase Ras bound to the nucleotide GppNHp, that is, the signal from approximately 10(15) phosphorus nuclei. The NMR spectra obtained are discussed in terms of the conformational variability of the active center of the Ras-nucleotide complex. We conclude that, in the crystal, the protein complex exists in three different conformations. Magic angle spinning (MAS) NMR spectra of a powder sample of Ras-GppNHp show a splitting of one of the phosphate resonances and thus confirm this conclusion. The MAS spectra provide, furthermore, evidence of a slow, temperature-dependent dynamic exchange process in the Ras protein crystal.  相似文献   

11.
Gordon-Mills  Elizabeth  Tate  Max  Hounslow  Andrea 《Hydrobiologia》1990,204(1):629-636
Both solid state (CP-MAS) and gel state (using standard solution state conditions) 13C NMR spectroscopy have been used to characterize a range of red algae that produce either agar or carrageenan. These techniques allow rapid determination of phycocolloid type within the algal tissue before extensive and time-consuming extractions and fractionations are carried out.The gel state technique can be used on living or dried material. Gel state spectra give high resolution and, because of the expectation that they will be correlated with the extractable phycocolloid, provide promise of a powerful technique for screening potentially useful red algae.  相似文献   

12.
13.
One major remaining problem in structural biology is to elucidate the structure and mechanism of function of membrane proteins. On the basis of preliminary information from genome projects, it is now estimated that up to 50,000 different membrane proteins may exist in the human being and that virtually every life process proceeds, sooner or later, through a membrane protein. Solid-state NMR spectroscopy in high magnetic field is rapidly developing into a widely applicable tool to describe the structure and help understand the mechanism of function of a membrane protein. Recent work in applied solid-state NMR spectroscopy crosses the boundary between the biological and the physical sciences, and aims at increasing the predictive range of this biophysical method.  相似文献   

14.
Grapefruit, Citrus paradisi, were injured, inoculated with Penicillium digitatum and incubated under conditions favourable for the accumulation of defence related material. Histochemical examination revealed that tissues adjacent to inoculated injuries contained phloroglucinol-HCl (PG-HCl) reactive material. Solvent washed cell wall preparations of intact and injured-inoculated peel were further purified using a mixture of cell wall degrading enzymes. Samples from injured inoculated tissue contained PG-HCl reactive globular material in addition to the fragments of xylem and cuticle found in controls. The principal chemical moieties of the material that accumulates in grapefruit injuries during wound-healing were studied by solid state 13C cross-polarization magic angle spinning NMR. A complete assignment of the NMR signals was made. From the analysis evidence was found that cellulose and hemicellulose are the biopolymers present in the intact peel samples, in addition, relevant quantities of cutin were found in the residues of enzyme digest. The NMR difference spectrum intact- wounded peels showed resonances which were attributed to all major functional groups of the aromatic-aliphatic suberin polyester of new material produced by the wounds. Information on the latter polyester was obtained by analyzing the T(1)rho (1H) relaxation.  相似文献   

15.
16.
Solid-state 2H NMR spectroscopy gives a powerful avenue to investigating the structures of ligands and cofactors bound to integral membrane proteins. For bacteriorhodopsin (bR) and rhodopsin, retinal was site-specifically labeled by deuteration of the methyl groups followed by regeneration of the apoprotein. 2H NMR studies of aligned membrane samples were conducted under conditions where rotational and translational diffusion of the protein were absent on the NMR time scale. The theoretical lineshape treatment involved a static axial distribution of rotating C-C2H3 groups about the local membrane frame, together with the static axial distribution of the local normal relative to the average normal. Simulation of solid-state 2H NMR lineshapes gave both the methyl group orientations and the alignment disorder (mosaic spread) of the membrane stack. The methyl bond orientations provided the angular restraints for structural analysis. In the case of bR the retinal chromophore is nearly planar in the dark- and all-trans light-adapted states, as well upon isomerization to 13-cis in the M state. The C13-methyl group at the “business end” of the chromophore changes its orientation to the membrane upon photon absorption, moving towards W182 and thus driving the proton pump in energy conservation. Moreover, rhodopsin was studied as a prototype for G protein-coupled receptors (GPCRs) implicated in many biological responses in humans. In contrast to bR, the retinal chromophore of rhodopsin has an 11-cis conformation and is highly twisted in the dark state. Three sites of interaction affect the torsional deformation of retinal, viz. the protonated Schiff base with its carboxylate counterion; the C9-methyl group of the polyene; and the β-ionone ring within its hydrophobic pocket. For rhodopsin, the strain energy and dynamics of retinal as established by 2H NMR are implicated in substituent control of activation. Retinal is locked in a conformation that is twisted in the direction of the photoisomerization, which explains the dark stability of rhodopsin and allows for ultra-fast isomerization upon absorption of a photon. Torsional strain is relaxed in the meta I state that precedes subsequent receptor activation. Comparison of the two retinal proteins using solid-state 2H NMR is thus illuminating in terms of their different biological functions.  相似文献   

17.
18.
Moisture-induced aggregation of lyophilized proteins in the solid state   总被引:3,自引:0,他引:3  
A critical problem in the storage and delivery of pharmaceutical proteins is their aggregation induced by moisture. A model system has been elaborated and investigated to elucidate the mechanism of this phenomenon. When 10 mg of bovine serum albumin lyophilized from an aqueous solution of pH 7.3 are wetted with just 3 muL of a buffered physiological saline solution and incubated in the solid state at 37 degrees C, the protein progressively loses its solubility in water; e.g., after a 24 h incubation 97% of the protein becomes insoluble. This moisture-induced aggregation of albumin has been discovered to be due to an intermolecular S-S bond formation via the thiol-disulfide interchange reaction. The dependence of the extent of the solid-state aggregation on the amount and mode of addition of moisture and the atmosphere, additives, temperature, and history of the protein powder have been investigated. The moisture-induced solid-state aggregation has also been established and studied for three other lyophilized proteins: ovalbumin, glucose oxidase, and beta-lactoglobulin. In all cases, the loss of solubility is caused by thiol-disulfide interchange either alone or in combination with a conformational (noncovalent) process. The aggregation can be minimized by lyophilizing the proteins from acidic aqueous solutions, by adding inorganic salts, by co-lyophilizing the proteins with water-soluble polymers, or by controlling the moisture content at optimal levels.  相似文献   

19.
Hass MA  Jensen MR  Led JJ 《Proteins》2008,72(1):333-343
Electric fields generated in native proteins affect almost every aspect of protein function. We present a method that probes changes in the electric field at specific locations within a protein. The method utilizes the dependence of the amide (1)H and (15)N NMR chemical shifts on electric charges in proteins. Charges were introduced at different positions in the blue copper protein plastocyanin, by protonation of side chains or by substitution of the metal ion. It is found that the associated chemical shift perturbations (CSPs) stem mainly from long-range electric field effects caused by the change in the electric charge. It is demonstrated that the CSPs can be used to estimate the dielectric constant at different locations in the protein, estimate the nuclear shielding polarizability, or position charges in proteins.  相似文献   

20.
Membrane dynamics is an essential part of many cellular mechanisms such as intracellular trafficking, membrane fusion/fission and mitotic organelle reconstitution. The dynamics of membranes is dependent primarily on their phospholipid and cholesterol composition and how these molecules are ordered in relation to one another. To determine the physical status of membranes in whole cells or purified membranes of subcellular compartments we have developed a novel application exploiting solid-state (2)H-NMR spectroscopy. We utilise this method to probe the dynamics of intact sperm and nuclear envelope precursor membranes. We show, using mass spectrometry, that either multilamellar or small unilamellar vesicles of deuterium-labelled palmitoyl-oleoylphosphatidylcholine can be used to probe the dynamics of sperm cells or nuclear envelope precursor membrane vesicles, respectively. Using (2)H-NMR we determine the order parameters of sperm cells and nuclear envelope precursor membrane vesicles. We demonstrate that whole sperm membranes are more dynamic than nuclear envelope precursor membranes due to the higher cholesterol levels of the latter. Our new application can be exploited as a generic method for monitoring membrane dynamics in whole cells, various subcellular membrane compartments and membrane domains in subcellular compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号