首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The nondefective Moloney murine leukemia virus (MuLV) induces clonal or oligoclonal T-cell tumors in mice or rats. The proviruses of these nondefective MuLVs have been shown to act as insertion mutagens most frequently activating an adjacent cellular gene involved in cell growth control. Mutations by provirus insertions, recognized as common provirus integration sites, have been instrumental in identifying novel cellular genes involved in tumor formation. We have searched for new common provirus integration sites in Moloney MuLV-induced thymomas. Using cellular sequences flanking a provirus cloned from one of these tumors, we found one region, designated Mis-2, which was the target of provirus integration in a low (3%) percentage of these tumors. Mis-2 was mapped on mouse chromosome 10, approximately 160 kbp downstream of myb. The Mis-2 region may contain a novel gene involved in tumor development.  相似文献   

2.
3.
Interleukin-15 (IL-15) is a novel cytokine whose effects on T-cell activation and proliferation are similar to those of interleukin-2 (IL-2), presumably because IL-15 utilizes the β and γ chains of the IL-2 receptor. Murine IL-15 cDNA and genomic clones were isolated and characterized. The murine Il15 gene was found to consist of eight exons spanning at least 34 kb and was localized to the central region of mouse chromosome 8 by interspecific backcross analysis. Intron positions in a partial human IL15 genomic clone were identical with positions of corresponding introns in the murine gene. The human IL15 gene was mapped to human chromosome 4q31 by fluorescence in situ hybridization.  相似文献   

4.
The murine leukemia retrovirus SL3-3 induces lymphomas in the T-cell compartment of the hematopoetic system when it is injected into newborn mice of susceptible strains. Previously, our laboratory reported on a deletion mutant of SL3-3 that induces T-cell tumors faster than the wild-type virus (S. Ethelberg, A. B. Sorensen, J. Schmidt, A. Luz, and F. S. Pedersen, J. Virol. 71:9796-9799, 1997). PCR analyses of proviral integrations in the promoter region of the c-myc proto-oncogene in lymphomas induced by wild-type SL3-3 [SL3-3(wt)] and the enhancer deletion mutant displayed a difference in targeting frequency into this locus. We here report on patterns of proviral insertions into the c-myc promoter region from SL3-3(wt), the faster variant, as well as other enhancer variants from a total of approximately 250 tumors. The analysis reveals (i) several integration site hot spots in the c-myc promoter region, (ii) differences in integration patterns between SL3-3(wt) and enhancer deletion mutant viruses, (iii) a correlation between tumor latency and the number of proviral insertions into the c-myc promoter, and (iv) a [5'-(A/C/G)TA(C/G/T)-3'] integration site consensus sequence. Unexpectedly, about 12% of the sequenced insertions were associated with point mutations in the direct repeat flanking the provirus. Based on these results, we propose a model for error-prone gap repair of host-provirus junctions.  相似文献   

5.
The Gross passage A murine leukemia virus (MuLV) induced T-cell leukemia of clonal (or oligoclonal) origin in inoculated mice. To study the role of the integrated proviruses in these tumor cells, we cloned several newly integrated proviruses (with their flanking cellular sequences) from a single tumor in procaryotic vectors. With each of the five clones obtained, a probe was prepared from the cellular sequences flanking the provirus. With one such probe (SS8), we screened several Gross passage A MuLV-induced SIM.S mouse tumor DNAs and found that, in 11 of 40 tumors, a provirus was integrated into a common region designated Gin-1. A 26-kilobase-pair sequence of Gin-1 was cloned from two lambda libraries, and a restriction map was derived. All proviruses were integrated as a cluster in the same orientation within a 5-kilobase-pair region of Gin-1, and most of them had a recombinant structure of the mink cell focus-forming virus type. The frequency of Gin-1 occupancy by provirus was much lower in thymoma induced by other strains of MuLV in other mouse strains. Using somatic-cell hybrid DNAs, we mapped Gin-1 on mouse chromosome 19. Gin-1 was not homologous to 16 known oncogenes and was distinct from the other common regions for provirus integration previously described. Therefore, Gin-1 appears to represent a new common provirus integration region. The integration of a provirus within Gin-1 might be an important event leading to T-cell transformation, and the Gin-1 region might harbor sequences which are involved in tumor development.  相似文献   

6.
7.
We have previously identified a region of genomic DNA which constitutes the site of frequent provirus integration in rat thymomas induced by Moloney murine leukemia virus (Lemay and Jolicoeur, Proc. Natl. Acad. Sci. USA 81:38-42, 1984). This genetic locus is now designated Mis-1 (Moloney integration site). Cellular sequences homologous to Mis-1 are present in mouse DNA. Using a series of hamster-mouse somatic cell hybrids, we mapped the Mis-1 locus to mouse chromosome 15. Frequent chromosome 15 aberrations have been described in mouse thymomas. Mis-1 represents a putative new oncogene which might be involved in the initiation or maintenance or both of these neoplasms.  相似文献   

8.
9.
10.
Previously, we have described the clinical and molecular characterization of a de novo 14q13.1-q21.1 microdeletion, less than 3.5 Mb in size, in a patient with severe microcephaly, psychomotor retardation, and other clinical anomalies. Here we report the characterization of the genomic structure of the human tuberin-like protein gene 1 (TULIP1; approved gene symbol GARNL1), a CpGisland-associated, brain-expressed candidate gene for the neurological findings in our patient, and its murine homologue. The human TULIP1 gene was mapped to chromosome band 14q13.2 by fluorescence in situ hybridization of BAC clone RP11-355C3 (GenBank Accession No. AL160231), containing the 3' region of the gene. TULIP1 spans about 271 kb of human genomic DNA and is divided into 41 exons. An untranscribed, processed pseudogene of TULIP1 was found on human chromosome band 9q31.1. The active locus TULIP1, encoding a predicted protein of 2036 amino acids, is expressed ubiquitously in pre- and postnatal human tissues. The murine homologue Tulip1 spans about 220 kb of mouse genomic DNA and is also divided into 41 exons, encoding a predicted protein of 2035 amino acids. No pseudogene could be found in the available mouse sequence data. Several splicing variants were found. Considering the location, expression profile, and predicted function, TULIP1 is a strong candidate for several neurological features seen in 14q deletion patients. Additionally we searched for mutations in the coding region of TULIP1 in subjects from a family with idiopathic basal ganglia calcification (IBGC; Fahr disease), previously linked to chromosome 14q. We identified two novel SNPs in the intron-exon boundaries; however, they did not segregate only with affected subjects in the predicted model of an autosomal dominant disease such as IBGC.  相似文献   

11.
The prolactin receptor (Prlr) and growth hormone receptor (Ghr) genes and the Moloney murine leukemia virus integration-2 (Mlvi-2) locus were mapped to mouse chromosome 15 and human chromosome 5 bands p12-p14. To examine the potential relationship between Mlvi-2 and the genes encoding the growth hormone receptor and the prolactin receptor, we determined the chromosomal location of all three loci in the rat, using a panel of rat-mouse somatic cell hybrids, and in the mouse, using a panel of (C57BL/6J x Mus spretus)F1 x C57BL/6J interspecific backcross mice. These analyses revealed that Ghr, Prlr, and Mlvi-2 map to chromosome 2 in the rat and to chromosome 15 in the mouse, in close proximity with each other. Pulsed-field gel electrophoresis of rat genomic DNA showed no overlaps between the gene encoding the prolactin receptor and the remaining loci. Moreover, expression of the prolactin receptor was not affected by provirus insertion in Mlvi-2. During these studies, however, we detected one T-cell lymphoma line (2779) in which the prolactin receptor gene was activated by provirus integration. Sequence analysis of polymerase chain reaction-derived cDNA clones showed that the prolactin receptor RNA message initiates at the 5' long terminal repeat and utilizes the splice donor site 5' of the gag gene to splice the viral sequences onto exon 1 of the prolactin receptor. This message is predicted to encode the intact prolactin receptor protein product. Exposure of the T-cell lymphoma line 2779 to prolactin promoted cellular proliferation.  相似文献   

12.
Dsi-1 is a region of chromosomal DNA that underwent proviral insertion in 3 of 24 Moloney murine leukemia virus-induced rat thymomas. In one of these tumors, a provirus is also integrated adjacent to the proto-oncogene c-myc. The proviruses in Dsi-1 have been characterized and appear to be complete. The proviruses were located within a 2-kilobase region that contained four prominent DNase I-hypersensitive sites. These hypersensitive sites were observed in Moloney murine leukemia virus-induced thymomas but not in NRK cells. The region of Dsi-1 immediately 3' to the insertions cross-hybridized with human and chicken DNA, indicating that it contains highly conserved sequences. No evidence could be found for the expression of this highly conserved region. Dsi-1 was mapped to mouse chromosome 4. This location demonstrates that Dsi-1 is different from 16 of the known proto-oncogenes (c-abl, c-erbA c-erbB, c-ets-1, c-ets-2, c-fes, c-fos, c-myb, c-myc, c-raf, A-raf, c-Ha-ras, c-Ki-ras, N-ras, c-sis, and c-src) and 12 cellular regions of tumor-associated integrations in retrovirus-induced tumors (c-erbB, Fis-1, int-1, int-2, Mis-1/pvt-1, Mlvi-1, Mlvi-2, c-mos, c-myb, c-myc, Pim-1, and c-Ha-ras). Hybridization experiments indicated that Dsi-1 is probably different from five additional proto-oncogenes (c-fgr, c-fms, c-mos, neu, and c-yes) and from two additional frequent integration regions (lck and Mlvi-3).  相似文献   

13.
14.
Retroviral tagging has been used extensively and successfully to identify genes implicated in cancer pathways. In order to find oncogenes implicated in T-cell leukemia, we used the highly leukemogenic radiation leukemia retrovirus VL3 (RadLV/VL3). We applied the inverted PCR technique to isolate and analyze sequences flanking proviral integrations in RadLV/VL3-induced T lymphomas. We found retroviral integrations in c-myc and Pim1 as already reported but we also identified for the first time Notch1 as a RadLV common integration site. More interestingly, we found a new RadLV common integration site that is situated on mouse chromosome X (XA4 region, bp 45091000). This site has also been reported as an SL3-3 and Moloney murine leukemia virus integration site, which strengthens its implication in murine leukemia virus-induced T lymphomas. This locus, named Kis2 (Kaplan Integration Site 2), was found rearranged in 11% of the tumors analyzed. In this article, we report not only the alteration of the Kis2 gene located nearby in response to RadLV integration but also the induction of the expression of Phf6, situated about 250 kbp from the integration site. The Kis2 gene encodes five different alternatively spliced noncoding RNAs and the Phf6 gene codes for a 365-amino-acid protein which contains two plant homology domain fingers, recently implicated in the B?rjeson-Forssman-Lehmann syndrome in humans. With the recent release of the mouse genome sequence, high-throughput retroviral tagging emerges as a powerful tool in the quest for oncogenes. It also allows the analysis of large DNA regions surrounding the integration locus.  相似文献   

15.
16.
17.
18.
19.
20.
E L Kwak  S V Torti  F M Torti 《Gene》1990,94(2):255-261
A mouse liver genomic library screened with a full-length cDNA encoding murine ferritin heavy chain (mFHC) [Torti et al., J. Biol. Chem. 263 (1988) 12638-12644] yielded a functional genomic clone mFHC. The genomic clone isolated included a region of approximately 3 kb containing four exons and three introns. Sequence comparisons of the mouse genomic clone with other genomic clones from rat, human and chicken showed a high degree of similarity among species in the coding regions. Introns and flanking sequences were less conserved. However, comparison of mFHC promoter elements with FHC genes from other species revealed common elements. Analysis of the genomic structure of FHC suggested the presence of pseudogenes. S1 nuclease analysis, however, confirmed that this mouse clone, when transfected into human MRC-5 fibroblasts, was transcribed, indicating that this clone contains an FHC functional gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号