首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic AMP levels increased in ovaries from normal cycling rats on the afternoon of proestrus at the same time as the plasma LH peak occurred. Plasma progesterone was also elevated at this time. These results complement the extensive in vitro data indicating that cyclic AMP mediates the action of LH on the ovary.  相似文献   

2.
The ability of the β-adrenergic agonist, isoproterenol, to elevate intracellular levels of cyclic-AMP (c-AMP) and cyclic GMP (c-GMP) in mouse parotid acini was dependent upon the extracellular sodium concentration. In the absence of extracellular sodium isoproterenol-stimulated c-GMP and c-AMP levels were significantly reduced; carbachol-stimulated c-GMP levels were not affected. Monensin, a sodium ionophore, mimicked the effects of isoproterenol in elevating c-GMP levels; this effect was abolished in the absence of extracellular sodium. Monensin did not mimic the effects of isoproterenol in elevating c-AMP levels. The data presented suggests that sodium ions may play a role in β-adrenergic regulation of cyclic nucleotide levels in mouse parotid gland and that the mechanisms involved in regulation of c-AMP and c-GMP levels appear to be different.  相似文献   

3.
4.
The subcellular localization of cyclic GMP and cyclic AMP in the rat caudate-putamen has been studied using horseradish peroxidase immunocytochemistry. Both of the putative neurotransmitter second messengers were visualized in neurons and glial cells at light microscopic resolutions, but not all cells of either category gave detectable staining. This was confirmed at the ultrastructural level where both stained and unstained elements of the same cell type were found within the same field. A striking variation was seen in cyclic nucleotide staining intensity within individual neural and glial cells. Both of the cyclic nucleotides were detected within postsynaptic terminal boutons and within astroglial processes. Cyclic GMP postsynaptic staining was stronger than glial staining, whereas the localization pattern was reversed for cyclic AMP. The synaptic localization of cyclic AMP and cyclic GMP immunoreactivity adds support to the idea that these compounds have an influential role in synaptic function within the striatum.  相似文献   

5.
L Volicer  B I Gold 《Life sciences》1973,13(3):269-280
Ethanol decreased in a dose-dependent manner the cyclic AMP level in the rat brain and separation of the brain into several parts showed that this decrease was limited to the cerebellum. High doses of ethanol (4–6 g/kg) blocked the rise of cyclic AMP levels induced by decapitation in all brain areas studied. Pentobarbital treatment which produced central depression similar to that caused by a high dose of ethanol, also decreased the cyclic AMP level in the cerebellum but it prevented the postdecapitation rise only in the pons and medulla oblongata. Lower doses of ethanol (1–2 g/kg) enhanced the decapitation-induced rise of cyclic AMP levels in the pons and medulla oblongata.  相似文献   

6.
In the rat, the effects of cold acclimation on the content of cyclic AMP and cyclic GMP were studied in various tissues concerned with increased heat production: brown and white adipose tissue, liver, heart, diaphragm, lungs, adrenals, thyroid. Significant cold-induced variations were observed only in those tissues in which the lipid metabolism is enhanced by cold (adipose tissues and liver). In these tissues, decrease in the cAMP/cGMP ratio indicates a role of cGMP in the regulation of the increased lipid metabolism.  相似文献   

7.
Amylase secretion and changes in the levels of cyclic AMP and GMP were studied in rabbit parotid gland slices incubated in vitro with a variety of neurohumoral transmitters, their analogs and inhibitors. Cyclic GMP levels increased 8-fold 5 min after exposure to carbachol (10−4 M), without a change in cyclic AMP levels; amylase output also rose. These effects were completely inhibited by muscarinic blockade with atropine, but were unaffected by α-adrenergic blockade with phenoxybenzamine. Epinephrine (4 · 10−5 M) produced a rapid increase in the levels of both cyclic nucleotides and in amylase release. The increase in cyclic GMP level was inhibited by previous exposure of the slices to phenoxybenzamine, while the cyclic AMP rise was prevented by the β-blocking agent, propranolol. Pure α-adrenergic stimulation with methoxamine (4 · 10−4 M) produced modest elevations in cyclic GMP content and amylase output, effects blocked by pre-treatment of slices with either atropine or phenoxybenzamine. At a concentration of 4 · 10−6 M, isoproterenol (a β-agonist) failed to affect cyclic GMP levels, but promptly stimulated increases in cyclic AMP levels, and after a short lag, amylase secretion. At a higher dose (4 · 10−5 M) isoproterenol produced elevations in the levels of both nucleotides. The carbachol-induced effects on cylcic GMP content and amylase release were greatly potentiated by the addition of isoproterenol (4 · 10−6 M).These data strongly suggest that cholinergic muscarinic agonists and α-adrenergic agonist stimulate amylase output in rabbit parotid gland by mechanisms involving cyclic GMP. The atropine-sensitive intracellular events effected by α-stimulation may be dependent upon endogenous generation of acetylcholine. Both cyclic nucleotides seem to be required for the early rapid secretion of amylase. The unique responses achieved by the combination of carbachol and isoproterenol suggest that isoproterenol may increase the sensitivity of this issue to the effects of cholinergic stimuli.  相似文献   

8.
9.
The level of cyclic AMP in the brown adipose tissue of perinatal rats was found to increase by the end of pregnancy and decrease during the first two days of life. It then increased in newborn rats maintained at either 28° or 16°. However, in the 16° group, the cAMP level remained high until the 21st day whereas, in the 28° group decreases were noted after the tenth day. These variations are discussed in regard to norepinephrine content and lipid metabolism in the tissue. Inverse variation of cAMP and cGMP levels were not observed during the period studied.  相似文献   

10.
11.
Possible roles of dibutyryladenosine 3',5'-cyclic monophosphate (cAMP) and dibutyryl-guanosine 3',5'-cyclic monophosphate (cGMP) in regulation of hepatocyte DNA synthesis were examined using primary cultures of young-adult rat hepatocytes maintained in arginine-free medium. Throughout the experimental period, nonparenchymal cells were hardly observed in the selective medium. When epidermal growth factor (EGF) was added to the cultures, a transient increase in the intracellular cAMP level preceded the elevation of hepatocyte DNA synthesis. EGF-stimulated hepatocyte DNA synthesis was remarkably enhanced by the elevation of the intracellular cAMP level induced by treatment with cAMP alone or a combination of cAMP and theophylline, an inhibitor of cyclic nucleotide phosphodiesterase. Furthermore, the early elevation of intracellular cAMP alone, which was induced by treatment with the combination of cAMP and theophylline, caused a remarkable increase in hepatocyte DNA synthesis. On the other hand, addition of EGF to the cultures caused a rapid decrease in the intracellular cGMP level followed by an increase in hepatocyte DNA synthesis. EGF-stimulated hepatocyte DNA synthesis was severely suppressed or completely inhibited by the elevation of the intracellular cGMP level induced by treatment with cGMP alone or a combination of cGMP and dipyridamole, a specific inhibitor of cGMP phosphodiesterase. These findings indicate that cAMP and cGMP act oppositely on the regulation of DNA synthesis of young-adult rat hepatocytes in primary culture: cAMP plays a positive role, whereas cGMP plays a negative role. Also it is strongly suggested that an early elevation of the intracellular cAMP level is essential for the onset of DNA synthesis in hepatocyte primary cultures.  相似文献   

12.
Effect of different monoamines and estradiol were studied on cyclic AMP (cAMP) accumulation in hypothalami from 21 day old female rats. Incubation for 5 min with 10?4M epinephrine, norepinephrine or dopamine resulted in an increase in cAMP accumulation in the hypothalamus. Incubation of hypothalamic tissue with estradiol (4 × 10?7M to 2 × 10?5M) also resulted in an increase in cyclic AMP levels. The increase caused by estradiol was observed only after 50 min of incubation period. The estradiol induced increase in cyclic AMP accumulation was abolished by both α and β blockers. These results suggest that the estradiol-induced increase in cyclic AMP may be mediated by a prior increase in catecholamines in the hypothalamic tissue.  相似文献   

13.
The effect of adrenocorticotropic hormone (ACTH) on the intracellular concentration of cyclic nucleotides was studied in cultures of neurons from embryonic chick cerebral hemispheres. Incubation of neurons with ACTH(1-24) in the presence of phosphodiesterase inhibitor isobutylmethylxanthine resulted in a sustained increase in cyclic AMP while rise in cyclic GMP level was transient. The values obtained for half-maximal stimulation were 0.5 microM and 0.03 nM for cyclic AMP and cyclic GMP respectively. Concomitantly, ACTH(1-24) stimulated guanylate cyclase activity (half-maximal stimulation at 0.02 nM). These results suggest the existence of two distinct populations of ACTH receptors in neurons and provide the first evidence that cyclic GMP does mediate the action of ACTH in neurons.  相似文献   

14.
Taurine produced no effect on the cyclic nucleotides level in the heart of intact rats but sharply inhibited the cAMP and cGMP level elevation in the rat heart occuring in stress. After atropine pretreatment of the animals no effect of taurine on the heart cGMP level was observed; its effect on the cAMP level was significantly inhibited against the background of partial beta-adrenoreceptors block. It is suggested that taurine is a nonspecific regulator of the myocardial cells sensitivity to the biologically active drugs.  相似文献   

15.
Adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP) metabolism in rat renal cortex was examined. Athough the cyclic AMP and cyclic GMP phosphodiesterases are similarly distributed between the soluble and particulate fractions following differential centrifugation, their susceptibility to inhibition by theophylline, dl-4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (Ro 20-1724), and 1-methyl-3-isobutylxanthine (MIX) are quite different. Ro 20-1724 selectively inhibited both renal cortical-soluble and particulate cyclic AMP degradation, but had little effect on cyclic GMP hydrolysis. Theophylline and MIX effectively inhibited degradation of both cyclic nucleotides, with MIX the more potent inhibitor. Effects of these agents on the cyclic AMP and cyclic GMP content of cortical slices corresponded to their relative potency in broken cell preparations. Thus, in cortical slices, Ro 20-1724 (2 mm) had the least effect on basal (without agonist), carbamylcholine, and NaN3-stimulated cyclic GMP accumulation, but markedly increased basal and (parathyroid hormone) PTH-mediated cyclic AMP accumulation, MIX (2 mm) which was as effective as Ro 20-1724 in potentiating basal and PTH-stimulated increases in cyclic AMP also mediated the greatest augmentation of basal, carbamylcholine, and NaN3-stimulated accumulation of cyclic GMP. By contrast, theophylline (10 mm) which was only 12% as effective as Ro 20-1724 in increasing the total slice cyclic AMP content in the presence of PTH was much more effective than Ro 20-1724 in potentiating carbamylcholine and NaN3-mediated increases in cyclic GMP. These results demonstrate selective inhibition of cyclic nucleotide phosphodiesterase activities in the rat renal cortex and support the possibility of multiple cyclic nucleotide phosphodiesterases in this tissue. Furthermore, both cyclic nucleotides appear to be rapidly degraded in the renal cortex.  相似文献   

16.
17.
18.
Amylase secretion and changes in the levels of cyclic AMP and GMP were studied in rabbit parotid gland slices incubated in vitro with a variety of neurohumoral transmitters, their analogs and inhibitors. Cyclic GMP levels increased 8-fold 5 min after exposure to carbachol (10(-4) M), without a change in cyclic AMP levels; amylase output also rose. These effects were completely inhibited by muscarinic blockade with atropine, but were unaffected by alpha-adrenergic blockade with phenoxybenzamine. Epinephrine (4 - 10(-5) M) produced a rapid increase in the levels of both cyclic nucleotides and in amylase release. The increase in cyclic GMP level was inhibited by previous exposure of the slices to phenoxybenzamine, while the cyclic AMP rise was prevented by the beta-blocking agent, propranolol. Pure alpha-adrenergic stimulation with methoxamine (4 - 10(-4) M) produced modest elevations in cyclic GMP content and amylase output, effects blocked by pre-treatment of slices with either atropine or phenoxybenzamine. At a concentration of 4 - 10(-6) M, isoproterenol (a beta-agonist) failed to affect cyclic GMP levels, but promptly stimulated increases in cyclic AMP levels, and after a short lag, amylase secretion. At a higher dose (4 - 10(-5) M) isoproterenol produced elevations in the levels of both nucleotides. The carbachol-induced effects on cyclic GMP content and amylase release were greatly potentiated by the addition of isoproterenol (4 - 10(-6) M). These data strongly suggest that cholinergic muscarinic agonists and alpha-adrenergic agonists stimulate amylase output in rabit parotid gland by mechanisms involving cyclic GMP. The atropine-sensitive intracellular events effected by alpha-stimulation may be dependent upon endogenous generation of acetylcholine. Both cyclic nucleotides seem to be required for the early rapid secretion of amylase. The unique responses achieved by the combination of carbachol and isoproterenol suggest that isoproterenol may increase the sensitivity of this tissue to the effects of cholinergic stimuli.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号