首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The passive membrane conductance LH1 of rat liver mitochondria has been measured and compared with the quantity nJesh/delta microHsh (n = H+/e stoichiometry; Jesh = rate of electron transfer in static head) over a delta microH range. The two curves approach each other only in the lower part of the range, while they sharply diverge at large values of delta microH. Thus nJesh/delta microHsh cannot be considered to be a measure of LH1 in the upper delta microH region. Only a fraction of the static head electron flow is accounted for by futile proton cycling via leaks. Contaminating open membrane fragments or completely leaky mitochondria can be responsible for only a small part of the residual rate of oxygen consumption. We conclude that a large part of static head respiration must have yet another cause and propose it to be intrinsic uncoupling of the respiratory chain enzymes.  相似文献   

2.
The mechanism of uncoupling of oxidative phosphorylation by carbonyl cyanide p-trifluoromethoxy)phenylhydrazone (FCCP), a typical weak acid protonophore, oleic acid, a fatty acid, and chloroform, a general anesthetic, has been investigated by measuring in mitochondria their effect on (i) the transmembrane proton electrochemical potential gradient (delta mu H) and the rates of electron transfer and adenosine 5'-triphosphate (ATP) hydrolysis in static head, (ii) delta mu H and the rates of electron transfer and ATP synthesis in state 3, and (iii) the membrane proton conductance. Both FCCP and oleic acid increase the membrane proton conductance, and accordingly, they cause a depression of delta mu H [generated by either the redox proton pumps or the adenosinetriphosphatase (ATPase) proton pumps]. Although their effects on ATP synthesis/hydrolysis, respiration, and delta mu H are qualitatively consistent with a pure protonophoric uncoupling mechanism and an additional inhibitory action of oleic acid on both the ATPases and the electron-transfer enzymes, a quantitative comparison between the dissipative proton influx and the rate of either electron transfer or ATP hydrolysis (multiplied by either the H+/e- or the H+/ATP stoichiometry, respectively) at the same delta mu H shows that the increase in membrane conductance induced by FCCP and oleic acid accounts for the stimulation of the rate of ATP hydrolysis but not for that of the rate of electron transfer. Chloroform (at concentrations that fully inhibit ATP synthesis) only very slightly increases the proton conductance of the mitochondrial membrane and causes only a little depression of delta mu H.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The mechanism of uncoupling of oxidative phosphorylation by carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP), oleic acid, and chloroform is further investigated by measuring in the presence of a certain concentration of each type of uncoupler (i) the mitochondrial P/O and respiratory control ratios upon progressive inhibition of the redox pumps and (ii) delta mu H and the rate of either electron transfer or adenosine 5'-triphosphate (ATP) hydrolysis in static head upon progressive inhibition of either the redox or the adenosine triphosphatase (ATPase) proton pumps. Chloroform exhibits in all the experiments a behavior very different from that of FCCP and oleic acid. For example, upon addition of antimycin to chloroform-supplemented mitochondria, the respiratory control ratio remains unchanged and the P/O ratio slightly increases (in a certain range of inhibition) instead of decreasing as expected for an increased membrane conductance (and as indeed measured in the presence of either FCCP or oleic acid). From the kinetic model of chemiosmotic free energy coupling described by Pietrobon and Caplan [Pietrobon, D., & Caplan, S.R. (1986) Biochemistry 25, 7690-7696] all the results can be simulated by making the assumptions that (i) chloroform acts specifically at the level of the proton pumps and intrinsically uncouples electron transfer and ATP hydrolysis/synthesis from proton translocation and (ii) FCCP and oleic acid have a mixed behavior and act both as protonophores and as intrinsic uncouplers of the redox pumps (but not of the ATPases). The consistency of the results with the alternative hypothesis that the three agents interfere either with localized energy coupling sites or with a direct interaction between proton pumps is discussed.  相似文献   

4.
D Pietrobon  S R Caplan 《Biochemistry》1985,24(21):5764-5776
General flow-force relations have been determined, by the Hill diagram method, for a six-state proton pump model with and without intrinsic uncoupling (molecular slipping). A computer-aided analysis of the resulting sigmoidal flow-force curves has been performed by using a set of physically meaningful rate constants. It is shown that gating effects and apparent irreversibility can arise from sigmoidicity. The regions of approximate linearity in the vicinity of inflection points, which may be far from equilibrium, have been examined with a view to characterization in terms of linear phenomenological equations, with due regard to the problems of kinetic equivalence of the forces and symmetry. The determination of thermodynamic parameters such as the degree of coupling, the phenomenological stoichiometry, and the efficiency in these regions is discussed, and their meaning is analyzed in relation to the parameters characterizing the Onsager domain close to equilibrium. The application of the phenomenological equations of near-equilibrium nonequilibrium thermodynamics to such regions is at best a simplification to be treated with great caution. A knowledge of the distance from equilibrium of the flow-controlling ranges of the forces (i.e., the ranges of approximate linearity) turns out to be crucial for the interpretation of thermodynamic parameters determined by manipulating one of the forces while the other remains constant, as well as for the interpretation of measurements of force ratios at static head. The latter approaches can give good estimates of the magnitude of the mechanistic stoichiometry and of the constant force if the pumps are highly coupled and are operating not far from equilibrium. The force-flow relationships are shown to be modified by intrinsic uncoupling, reflecting the regulatory influence of the forces on the extent and nature of the slip. Thus reaction slip increases, for example, as the force against which the proton pump operates increases. The possible physiological significance of regulated intrinsic uncoupling is discussed.  相似文献   

5.
The relationship between rate of ATP synthesis, JATP, and value of the proton electrochemical gradient, delta mu H, has been analyzed in intact mitochondria. Onset of phosphorylation causes a depression of delta mu H of 1.5 kJ/mol. There is a close parallelism between inhibition of JATP and restoration of delta mu H to its state-4 value during titrations with oligomycin or atractyloside. Titrations with ionophores display the following features: (a) delta mu H can be depressed by 3-4 kJ/mol by valinomycin + K+ without affecting the rate of ATP synthesis; (b) uncouplers abolish JATP completely while depressing delta mu H by 3 kJ/mol; (c) complete abolition of ATP synthesis by inhibitors of electron transport is accompanied by a depression of delta mu H of only 1 kJ/mol. The results indicate that: (a) there is a close functional relationship between redox and ATPase H+ pumps, whereby inhibition of electron transfer is accompanied by simultaneous inhibition of the ATPase H+ pumps; and (b) uncoupling of oxidative phosphorylation is not due to depression of delta mu H per se. The consistence of the present data with either a chemiosmotic model where delta mu H is the sole and obligatory intermediate for energy coupling, or models where there is a direct transfer of energy between the two pumps is discussed.  相似文献   

6.
It is suggested that loose coupling in free energy transducing organelles is due partly to leaks through the phospholipid bilayer (extrinsic uncoupling) and partly to "slipping" of the proton pumps (intrinsic uncoupling). The flow ratio of the redox pumps (JH/JO) measured at level flow is not affected by extrinsic uncoupling, but it will be lower the higher the extent of intrinsic uncoupling. During operation of cytochrome oxidase with ferrocyanide or N,N,N',N'-tetraphenyl-p-phenylenediamine as substrates, the rate of resting respiration depends on substrate concentration and does not exhibit control by delta muH; the available data strongly suggest that the enzyme is intrinsically uncoupled to a high and variable (substrate concentration-dependent) extent. It is concluded that flow ratios (at level flows) provide underestimates of the cytochrome oxidase pump stoichiometry.  相似文献   

7.
M Zoratti  V Petronilli 《FEBS letters》1985,193(2):276-282
The relationship between rate of ATP synthesis and transmembrane electrochemical proton gradient has been determined in rat liver mitochondria oxidizing succinate, using the respiratory inhibitor malonate or the uncoupler FCCP to decrease delta microH progressively. As previously reported [(1982) Eur. J. Biochem. 126, 443-451] two different relationships are obtained depending on the method used. Evidence is presented that this result is not due to underestimation of the delta microH maintained by fast-respiring mitochondria, as recently suggested [(1985) FEBS Lett. 181, 323-327].  相似文献   

8.
Control processes in oxidative phosphorylation have been studied in three experimental models. (1) In isolated yeast mitochondria, external ATP is a regulatory effector of cytochrome-c oxidase activity. In phosphorylating or uncoupling states, the relationships between respiratory rate and delta mu H+, and the respiratory rate and cytochrome-c oxidase reduction level are dependent on this kinetic regulation. (2) In rat liver mitochondria, the response of the respiratory rate to uncoupler addition is age-dependent: liver mitochondria isolated from young rats maintain a greater delta mu H+ than liver mitochondria isolated from adults, with the same respiratory rate obtained with the same concentration of uncoupler. This behaviour is linked to redox proton pump properties, i.e., to the degree of intrinsic uncoupling induced by uncoupler addition. (3) The effect of almitrine, a new kind of ATPase/ATPsynthase inhibitor, was studied in mammalian mitochondria. (i) Almitrine inhibits oligomycin-sensitive ATPase - it decreases the ATPase/O value without any change in delta mu H+; (ii) almitrine increased the mechanistic H+/ATP stoichiometry of ATPase/ATPsynthase; (iii) almitrine-induced changes in H+/ATPase stoichiometry depend on the flux magnitude through ATPase. These results are discussed in terms of the following interdependent parameters; flux value, force, pump efficiency and control coefficient.  相似文献   

9.
Intrinsic and extrinsic uncoupling of oxidative phosphorylation   总被引:17,自引:0,他引:17  
This article reviews parameters of extrinsic uncoupling of oxidative phosphorylation (OxPhos) in mitochondria, based on induction of a proton leak across the inner membrane. The effects of classical uncouplers, fatty acids, uncoupling proteins (UCP1-UCP5) and thyroid hormones on the efficiency of OxPhos are described. Furthermore, the present knowledge on intrinsic uncoupling of cytochrome c oxidase (decrease of H(+)/e(-) stoichiometry=slip) is reviewed. Among the three proton pumps of the respiratory chain of mitochondria and bacteria, only cytochrome c oxidase is known to exhibit a slip of proton pumping. Intrinsic uncoupling was shown after chemical modification, by site-directed mutagenesis of the bacterial enzyme, at high membrane potential DeltaPsi, and in a tissue-specific manner to increase thermogenesis in heart and skeletal muscle by high ATP/ADP ratios, and in non-skeletal muscle tissues by palmitate. In addition, two mechanisms of respiratory control are described. The first occurs through the membrane potential DeltaPsi and maintains high DeltaPsi values (150-200 mV). The second occurs only in mitochondria, is suggested to keep DeltaPsi at low levels (100-150 mV) through the potential dependence of the ATP synthase and the allosteric ATP inhibition of cytochrome c oxidase at high ATP/ADP ratios, and is reversibly switched on by cAMP-dependent phosphorylation. Finally, the regulation of DeltaPsi and the production of reactive oxygen species (ROS) in mitochondria at high DeltaPsi values (150-200 mV) are discussed.  相似文献   

10.
Addition of bovine serum albumin to state 4 mitochondria results in a depression of the proton leak and of the resting respiration of 70 and 25%, respectively. The conductance membrane potential diagram, both in the ohmic and in the non-ohmic region, shows that in the presence of bovine serum albumin the level of ohmic conductance is lowered while that of non-ohmic conductance is increased toward higher delta psi values. The same effect is observed during operation of the different proton pumps. Addition of chloroform affects the conductance membrane potential diagram in the following manner: there is no effect in the ohmic region with all pumps, while there is an effect in the non-ohmic region either at site III or at sites II plus III but not at site II. This suggests a possible effect of chloroform at the level of the cytochrome oxidase proton pump. During titration with oligomycin of the ATPase proton pump the conductance potential diagram shows a region of non-ohmicity only in the presence but not in the absence of an ATP-regenerating system. Protonophoric uncouplers such as carbonyl cyanide p(trifluoromethoxy)phenylhydrazone and intrinsic uncouplers such as chloroform have different effects on the relationship between rates of charge translocation and of oxygen consumption, and thus on the pump stoichiometries, in that the slope of the diagram is modified by the latter but not by the former. The differential effects of protonophores and of intrinsic uncouplers on the stoichiometries have been analyzed by computer simulations and represent an additional criterion to distinguish between extrinsic and intrinsic mechanisms of uncoupling.  相似文献   

11.
Several different proton pumps were used to generate a proton motive force (delta p, proton motive force across the mitochondrial inner membrane) in isolated rat liver mitochondria, and the relationship between delta p and pump rate was investigated by titrating with various inhibitors of the pumps. It was found that this relationship was the same for mitochondria respiring on succinate irrespective of whether respiration was inhibited with malonate, antimycin or cyanide, indicating that the relationship was independent of the redox state of the respiratory chain. When delta p was generated by either the cytochrome bc1 complex, cytochrome oxidase, both together, or ATP hydrolysis (and transport), the reaction rates (in moles of electrons or ATP) were in the ratio of close to 3:1.5:1:1, respectively, at all accessible values of delta p. This suggests that the proton stoichiometries (H+/e and H+/ATP, where H+/e is the number of protons translocated vectorially across the inner membrane per electron transferred by the respiratory chain and H+/ATP is the number of protons translocated vectorially per ATP molecule hydrolyzed externally) were in the ratio of close to 1:2:3:3, respectively, at all values of delta p. Possible reasons for previous contradictory results are suggested.  相似文献   

12.
Incubation of normal mitochondria at 45 degrees C results in increases of respiration and of total apparent proton conductance (TAPC, respiration/proton motive force) and in an upward shift of the flow-force relationships. Similar effects are observed during operation of the redox proton pumps at different sites of the respiratory chain. These effects are accompanied by an almost equivalent increase of the passive proton conductance (PPC, proton leakage/proton motive force). In mitochondria from 3,3,5-triiodo-L-thyronine (T3)-treated rats there are also increases of respiration and of TAPC and an upward shift of flow-force relationships, more pronounced at the level of the cytochrome oxidase proton pump. However, at variance from the incubation at 45 degrees C, in mitochondria from T3-treated rats there is only a slight increase of PPC. Addition of bovine serum albumin to normal mitochondria incubated at 45 degrees C results in a marked depression of TAPC in the nonlinear range of the flow-force relationships. An equivalent effect is not observed in mitochondria from T3-treated rats. The experimental results have been compared with computer simulations obtained on the basis of a chemiosmotic model of energy transduction. The increase of TAPC following incubation at high temperature is apparently due to changes of the proton conductance mainly at the level of PPC, while the increase of TAPC following T3 administration is rather due to changes presumably at the level of the redox or ATPase proton pumps.  相似文献   

13.
Under non-phosphorylating conditions a high proton transmembrane gradient inhibits the rate of oxygen consumption mediated by the mitochondrial respiratory chain (state IV). Slow electron transit leads to production of reactive oxygen species (ROS) capable of participating in deleterious side reactions. In order to avoid overproducing ROS, mitochondria maintain a high rate of O2 consumption by activating different exquisitely controlled uncoupling pathways. Different yeast species possess one or more uncoupling systems that work through one of two possible mechanisms: i) Proton sinks and ii) Non-pumping redox enzymes. Proton sinks are exemplified by mitochondrial unspecific channels (MUC) and by uncoupling proteins (UCP). Saccharomyces. cerevisiae and Debaryomyces hansenii express highly regulated MUCs. Also, a UCP was described in Yarrowia lipolytica which promotes uncoupled O2 consumption. Non-pumping alternative oxido-reductases may substitute for a pump, as in S. cerevisiae or may coexist with a complete set of pumps as in the branched respiratory chains from Y. lipolytica or D. hansenii. In addition, pumps may suffer intrinsic uncoupling (slipping). Promising models for study are unicellular parasites which can turn off their aerobic metabolism completely. The variety of energy dissipating systems in eukaryote species is probably designed to control ROS production in the different environments where each species lives.  相似文献   

14.
The effects of pH on the thermodynamic properties of the proton-translocating cyclic electron transfer system in a purple photosynthetic bacterium Chromatium vinosum were studied. Two thermodynamic parameters, the flux (Je) and force (deltamue) of the electron transfer process, were analyzed. The rate of electron transfer in the re-reduction of photooxidized reaction-center bacteriochlorophyll was used as Je. deltamue was determined from the intensity of the delayed fluorescence from bacteriochlorophyll. deltamue is composed of the redox potential difference and the electrical potential difference between two electron transfer components. In the steady state under illumination, the flux-to-force ratio is determined by the following relationship: Je = (1--q2)Lee deltamue where q is the "degree of coupling" of electron transfer to proton translocation and Lee is the value of Je/delta-approximately similar e when there is no back pressure by formation of delta approximately muH+ (electrochemical potential difference of H+). The value of (1--q2) Lee increased with increasing pH in the neutral pH range. Uncouplers and ionophores that dissipate delta-approximately muH+ increased Je and decreased deltamue. The effects were more prominent in the lower pH range. Therefore, q must be smaller at higher pH. The coupling is probably tight when redox components are saturated with protons. The experimental results agreed with the theoretical predictions for a system where a hydrogen-translocating component functions as an electron-proton symport carrier.  相似文献   

15.
We have confirmed that the respiration rate of rat liver mitochondria can be substantially inhibited with only a small drop in proton motive force. We have directly measured the passive proton permeability as a function of delta psi by using K+ diffusion potentials and have shown that there is a large increase in proton permeability at high delta psi. This can quantitatively account for the inhibitor titrations of respiration. delta psi and delta pH were shown to have roughly equal effects on the relatively high respiration rate in static head. The permeabilities to K+, tetramethylammonium+ and choline+ were shown to increase greatly at high delta psi, in a similar way to proton permeability, indicating a similar mechanism of entry.  相似文献   

16.
Bernhard Kadenbach 《BBA》2003,1604(2):77-94
This article reviews parameters of extrinsic uncoupling of oxidative phosphorylation (OxPhos) in mitochondria, based on induction of a proton leak across the inner membrane. The effects of classical uncouplers, fatty acids, uncoupling proteins (UCP1-UCP5) and thyroid hormones on the efficiency of OxPhos are described. Furthermore, the present knowledge on intrinsic uncoupling of cytochrome c oxidase (decrease of H+/e stoichiometry=slip) is reviewed. Among the three proton pumps of the respiratory chain of mitochondria and bacteria, only cytochrome c oxidase is known to exhibit a slip of proton pumping. Intrinsic uncoupling was shown after chemical modification, by site-directed mutagenesis of the bacterial enzyme, at high membrane potential ΔΨ, and in a tissue-specific manner to increase thermogenesis in heart and skeletal muscle by high ATP/ADP ratios, and in non-skeletal muscle tissues by palmitate. In addition, two mechanisms of respiratory control are described. The first occurs through the membrane potential ΔΨ and maintains high ΔΨ values (150-200 mV). The second occurs only in mitochondria, is suggested to keep ΔΨ at low levels (100-150 mV) through the potential dependence of the ATP synthase and the allosteric ATP inhibition of cytochrome c oxidase at high ATP/ADP ratios, and is reversibly switched on by cAMP-dependent phosphorylation. Finally, the regulation of ΔΨ and the production of reactive oxygen species (ROS) in mitochondria at high ΔΨ values (150-200 mV) are discussed.  相似文献   

17.
During the past years many efforts have been made to elucidate the origin of the uncoupling mechanisms induced by hyperthyroidism in mitochondria. Two main mechanisms have been proposed: a classical protonophoric uncoupler mechanism, considering the action of thyroid hormones at the level of the lipid membrane bilayer, and a slipping mechanism with more localized effects at the level of the redox proton pumps. This short review is devoted to comparing and discussing the evidence against and in favour of these two mechanisms.  相似文献   

18.
The electrochemical gradient of protons, delta microH+, in Candida albicans was estimated between pH 3.5 and 8.5. The electrical potential difference (delta psi) and the chemical proton gradient (delta pH) were measured by steady-state distribution of tetraphenylphosphonium ion and of propionic acid across the plasma-membrane, respectively. In the pH range tested, the intracellular pH was maintained fairly constant at values between 7.3 and 8.1. On the other hand, there was an up to three fold enhancement of delta psi under similar conditions. The uptake of a neutral (glycine), an acidic (L-glutamate) and a basic (L-arginine) amino-acids and of the aldopentose (D-xylose) was determined under different values of delta microH+, which was manipulated by varying the pH of the cell suspension. The rate of uptake of D-xylose and glycine appeared to follow delta microH+ while the uptake velocity of L-arginine could be correlated to changes in delta psi. The rate of uptake of L-glutamate, although at highest among the rates of tested nutrients, was, however, largely independent of delta microH+. This and other reasons (discussed below) indicate that delta microH+ may not be the sole driving force of nutrients uptake in C. albicans.  相似文献   

19.
Arnaud Mourier 《BBA》2010,1797(2):255-468
The main function of mitochondria is energy transduction, from substrate oxidation to the free energy of ATP synthesis, through oxidative phosphorylation. For physiological reasons, the degree of coupling between these two processes must be modulated in order to adapt redox potential and ATP turnover to cellular needs. Such a modulation leads to energy wastage. To this day, two energy wastage mechanisms have been described: the membrane passive proton conductance (proton leak) and the decrease in the coupling efficiency between electrons transfer and proton extrusion at the proton pumps level (redox or proton slipping). In this paper, we describe a new energy wastage mechanism of interest. We show that in isolated yeast mitochondria, the membrane proton conductance is strictly dependent on the external dehydrogenases activity. An increase in their activity leads to an increase in the membrane proton conductance. This proton permeability is independent of the respiratory chain and ATP synthase proton pumps. We propose to name this new mechanism “active proton leak.” Such a mechanism could allow a wide modulation of substrate oxidation in response to cellular redox constraints.  相似文献   

20.
Cytochrome bc1 complexes of microorganisms.   总被引:17,自引:2,他引:15       下载免费PDF全文
The cytochrome bc1 complex is the most widely occurring electron transfer complex capable of energy transduction. Cytochrome bc1 complexes are found in the plasma membranes of phylogenetically diverse photosynthetic and respiring bacteria, and in the inner mitochondrial membrane of all eucaryotic cells. In all of these species the bc1 complex transfers electrons from a low-potential quinol to a higher-potential c-type cytochrome and links this electron transfer to proton translocation. Most bacteria also possess alternative pathways of quinol oxidation capable of circumventing the bc1 complex, but these pathways generally lack the energy-transducing, protontranslocating activity of the bc1 complex. All cytochrome bc1 complexes contain three electron transfer proteins which contain four redox prosthetic groups. These are cytochrome b, which contains two b heme groups that differ in their optical and thermodynamic properties; cytochrome c1, which contains a covalently bound c-type heme; and a 2Fe-2S iron-sulfur protein. The mechanism which links proton translocation to electron transfer through these proteins is the proton motive Q cycle, and this mechanism appears to be universal to all bc1 complexes. Experimentation is currently focused on understanding selected structure-function relationships prerequisite for these redox proteins to participate in the Q-cycle mechanism. The cytochrome bc1 complexes of mitochondria differ from those of bacteria, in that the former contain six to eight supernumerary polypeptides, in addition to the three redox proteins common to bacteria and mitochondria. These extra polypeptides are encoded in the nucleus and do not contain redox prosthetic groups. The functions of the supernumerary polypeptides of the mitochondrial bc1 complexes are generally not known and are being actively explored by genetically manipulating these proteins in Saccharomyces cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号