首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-resolution autoradiography has been employed to localize the nonsolubilized but genetically excluded deoxyribonucleic acid (DNA) of T4 bacteriophage superinfecting endonuclease I-deficient Escherichia coli. This DNA was found to be associated with the cell envelope (this term is used here to include all cellular components peripheral to and including the cytoplasmic membrane); in contrast, T4 DNA in primary infected cells, like host DNA in uninfected E. coli, was found to be near the cell center. The envelope-associated DNA from super-infecting phage was not located on the outermost surface of the cell since it was insensitive to deoxyribonuclease added to the medium. These results suggest that DNA from superinfecting T-even phage is trapped within the cell envelope.  相似文献   

2.
The immunity (imm) gene of Escherichia coli bacteriophage T4.   总被引:3,自引:1,他引:2       下载免费PDF全文
M J Lu  U Henning 《Journal of virology》1989,63(8):3472-3478
The immunity (imm) gene of the Escherichia coli bacteriophage T4 effects exclusion of phage superinfecting cells already infected with T4. A candidate for this gene was placed under the control of the lac regulatory elements in a pUC plasmid. DNA sequencing revealed the presence of an open reading frame encoding a very lipophilic 83-residue (or 73-residue, depending on the unknown site of translation initiation) polypeptide which most likely represents a plasma membrane protein. This gene could be identified as the imm gene because expression from the plasmid caused exclusion of T4 and because interruption of the gene in the phage genome resulted in a phage no longer effecting superinfection immunity. It was found that the fraction of phage which was excluded upon infection of cells possessing the plasmid-encoded Imm protein ejected only about one-half of their DNA. Therefore, the Imm protein inhibited, directly or indirectly, DNA ejection.  相似文献   

3.
Restriction of nonglucosylated T2 phage (T(*)2) as a function of bacterial growth state was the same for endonuclease I-containing and endonuclease I-deficient strains of Escherichia coli B. Furthermore, E. coli strains with various levels of restriction for T2 had comparable endonuclease I activities. It was also found that a T4 mutant temperature-sensitive for gene 46 and 47 functions was fully restricted at 42 C. It therefore appears that neither endonuclease I nor the phage-induced nucleases whose activities are blocked by mutations in genes 46 and 47 catalyze the initial event in restriction of nonglucosylated T-even phages.  相似文献   

4.
Experiments reported in the preceding paper [4] had shown that host-cell reactivation (HCR) of UV-irradiated phage T1 in excision-repair proficient Escherichia coli cells is inhibited by superinfection with phage T5. Theoretical considerations have led to predictions concerning the dependence of repair inhibition on the multiplicity of superinfecting T5 phage and on the UV fluence to which they were exposed. These predictions have been supported by experimental results described in this paper. The fluence dependence permitted calculation of the relative UV sensitivity of the gene function responsible for repair inhibition; it was found to be about 2.3% that of the plaque-forming ability of phage T5.The T5-inhibitable step in excision repair occurs early in the infective cycle of T1. Furthermore, experiments involving the presence of 400 μg/ml chloramphenicol showed that HCR inhibition of T1 is caused by a protein produced after the FST segment of T5 (i.e. the first 8% of the T5 genome) has entered the host cell. A previously described minor T1 recovery process, occuring in both excision-repair-proficient and -deficient host cells, is inhibited by T5 infection due to a different substance, which is most likely associated with the “second-step-transfer” region of T5 DNA (involving the remainder of the genome). Superinfection with T4ν1 phage resulted in HCR inhibition of T1, resembling that observed after T5 superinfection. The discussion of these results suggests that inhibition of the bacterial excision repair system by T5 or T4 infection occurs at the level of UV-endonucleolytic incision, and that lack of HCR both in T-even phages and in T5 can be explained in the same manner.  相似文献   

5.
Wild-type sie(+) P22 prophage converted Salmonella typhimurium lysogens to exclude deoxyribonucleic acid (DNA) injected by superinfecting phage. DNA from a P22 superinfecting virulent phage associated with the replication complex in a sie(-) lysogen but not in a sie(+) lysogen.  相似文献   

6.
Wiesmeyer, Herbert (Vanderbilt University, Nashville, Tenn.). Prophage repression as a model for the study of gene regulation. I. Titration of the lambda repressor. J. Bacteriol. 91:89-94. 1966.-The concentration of lambda repressor molecules within a lambda lysogenic cell was estimated from the multiplicity of superinfecting homologous phage necessary to permit replication and release of plaque-forming units. A multiplicity of 20 superinfecting phage was found sufficient to permit replication to occur in the normal lambda lysogen. The phage released after lysis of the superinfected lysogen was composed of both prophage and superinfecting phage types. Superinfection of the lysogen at lower multiplicities resulted in the lysis of only a small percentage of infected cells and is thought to represent a possible heterogeneity of repressor concentration in the lysogenic population. Viability of the superinfecting particle was found to be unnecessary for titration of the repressor. The repressor concentration in three lysogens of the nonultraviolet-inducible mutant of lambda, lambda(ind-), was found to be greater than 20 regardless of the host bacterium. However, the number of cells yielding phage after superinfection was found to vary with the particular host. The specificity of the lambda repressor was shown to be limited to homologous phage, as determined following heterologous superinfection experiments with phages T6r, 82c, 434c, 434hy, and 424. In all instances except that of superinfection with phage 434hy, only heterologous phage replication occurred. Superinfection by phage 434hy resulted in the release of both prophage and superinfecting phage types. The latter type represented approximately 80% of the total phage released.  相似文献   

7.
A general procedure is described for isolation of T-even phage-tolerant mutants of Escherichia coli. Two such mutants of E. coli B have been examined in some detail. These mutants adsorb T-even phages but are unable to release viable progeny. Under certain conditions, viability of the cells is completely unaffected by phage infection in one mutant, and there is but a slight decrease in colony-forming ability in the other. Phage deoxyribonucleic acid (DNA) is injected into these cells, as shown by the formation of phage-specific enzymes, but it is not degraded to acid-soluble material. Some phage DNA replication occurs in both strains. The mutants are both more resistant to ultraviolet light than is the parent strain.  相似文献   

8.
Marker Rescue in Haemophilus influenzae Bacteriophage   总被引:1,自引:0,他引:1       下载免费PDF全文
Rescue of wild-type markers from transfecting phage DNA in cómpetent Haemophilus influenzae cells by superinfection with temperature-sensitive phage (marker rescue) is approximately linearly dependent upon the concentration of transfecting DNA. The amount of marker rescue with a constant amount of transfecting DNA increases with increasing multiplicities of superinfecting phage up to about 4, and then decreases at higher multiplicities. Host restriction of transfecting DNA does not affect marker rescue. The frequency of wild-type recombinants from marker rescue is much greater than that from multiple infection with whole phages, and is comparable to that obtained with two mutant-transfecting DNAs. The amount of marker rescue decreases exponentially with time between entrance of the transfecting DNA and superinfection, and the rate of decrease is independent of map position of the rescued marker. Marker rescue is drastically reduced in the recombination-defective strains, rec1 and rec2.  相似文献   

9.
Alkylation of T7 bacteriophage blocks superinfection exclusion   总被引:1,自引:1,他引:0       下载免费PDF全文
Alkylation of T7 bacteriophage by methyl methane sulfonate blocked superinfection exclusion. This blockage could be correlated with a delay in the synthesis of phage-specific proteins. Therefore we conclude that protein synthesis directed by the primary infecting phage is required for efficient exclusion of superinfecting phage particles.  相似文献   

10.
Escherichia coli strains B and K-12, which restrict growth of nonglucosylated T- even phage (T(*) phage), and nonrestricting strains (Shigella sonnei and mutants of E. coli B) were tested for levels of endonuclease I and exonucleases I, II, and III, by means of in vitro assyas. Cell-free extracts freed from deoxyribonucleic acid (DNA) were examined with three substrates: E. coli DNA, T(*)2 DNA, and T2 DNA. Both restricting and nonrestricting strains had comparable levels of the four nuclease activities and had similar patterns of preference for the three substrates. In addition, mutants of E. coli B and K-12 that lack endonuclease I were as effective as their respective wild types in restricting T(*) phage.  相似文献   

11.
The majority of the deoxyribonucleic acid (DNA) of superinfecting T4 bacteriophage which is injected and not hydrolyzed does not attach to host cell membrane. Low levels of association of secondary phage DNA with membrane appear to be related to temporal genetic exclusion.  相似文献   

12.
When Escherichia coli cells are gamma irradiated they degrade their deoxyribonucleic acid (DNA). The DNA of previously gamma-irradiated T4 phage is also degraded in infected cells. The amount of degradation is not only dependent on the dose but also on the genotype of the cell. The amount of degradation is less in cells carrying a recB or a recC mutation, suggesting that most of the DNA degradation is due to the recB(+) and recC(+) gene product (exonuclease V). In some strains a previous dose of ultraviolet (UV) light followed by incubation renders the cells resistant to DNA degradation after gamma irradiation. We have shown this inhibition to take place for infecting T4 phage also. By using six strains of E. coli selected for mutations in the genes recA, exr (or lex), and uvrB, we have been able to show that the preliminary UV treatment produces no change in recA and exr cells for both endogenous DNA degradation and the degradation of infecting irradiated T4 phage DNA, i.e., inhibition was not detected in these strains. On the other hand, wild-type cells and strains carrying mutations of uvrB show inhibition in both types of experiments. Because the recA gene product and the exr(+) (lex(+)) gene product are necessary for the induction of prophage, it is possible that the phenomenon of inducible inhibition requires recA(+) and exr(+) presence. One interpretation of these results is that an inducible inhibitor may be controlled by the exr gene.  相似文献   

13.
UV-irradiated phage T5, in contrast to T1, T3 and T7, fail to display hostcell reactivation (HCR) when infecting excision-repair proficient Escherichia coli cells. Possible causes of this lack of HCR (which T5 shares with the T-even phages) have been investigated by studying HCR of T1 under conditions of superinfection by T5. Repair-proficient B/r cells were infected at low multiplicity with UV-irradiated phage T1 in the presence of 1.8 mg/ml caffeine and were superinfected after 15 min with heavily UV-irradiated T5 amber mutants at high multiplicity. The caffeine, which is later diluted out, prevents any T1 repair prior to T5 superinfection, and UV (254 nm) irradiation of T5 with 144 J/m2 reduces the ability of this phage to exclude T1, thus permitting a reasonable fraction of the mixedly infected complexes to produce T1 progeny.Under these conditions, T5 superinfection causes loss of HCR in about 90% of the T1-producing complexes. Superinfection with unirradiated T5 likewise inhibits HCR of T1, but superinfection with irradiated T3 (a host-cell-reactivable phage) does not. This indicates that the observed HCR inhibition of T1 results from T5 infection rather than from competition of irradiated foreign DNA for the excision-repair enzymes of the bacterial host. Employment of apropriate T5 amber mutants has shown that “first-step transfer” (FST) of T5 DNA (involving only 8% of the T5 genome) is sufficient for HCR inhibition, but that transfer of the remainder DNA in addition inhibits a previously described minor T1 recovery process. HCR inhibition of T1, and thus presumably lack of HCR in T5 itself, is ascribed to a substance which is produced either post infection by a gene located in the FST segment of the T5 genome, or which is transferred from extracellular T5 together with the FST DNA.  相似文献   

14.
15.
Rutberg, Blanka (Karolinska Institutet, Stockholm, Sweden), and Lars Rutberg. Role of superinfecting phage in lysis inhibition with phage T4 in Escherichia coli. J. Bacteriol. 90:891-894. 1965.-The ability of bacteriophage T4 to induce lysis inhibition upon superinfection was investigated after various treatments of the phage. This ability was found not to be a property of the external protein part of the phage, nor was it dependent on the functional and possibly structural integrity of the phage genetic material.  相似文献   

16.
A study was made of several bacteriophages (including phages U2 and LB related to T-even phages of Escherichia coli) that grow both on E. coli K12 and on some Salmonella strains. Such phages were termed ambivalent. T-even ambivalent phages (U2 and LB) are rare and have a limited number of hosts among Salmonella strains. U2 and LB are similar to canonical E. coli-specific T-even phages in morphological type and size of the phage particle and in reaction with specific anti-T4 serum. Phages U2 and LB have identical sets of structural proteins, some of which are similar in size to structural proteins of phages T2 and T4. DNA restriction patterns of phages U2 and LB differ from each other and from those of T2 and T4. Still, DNAs of all four phages have considerable homology. Unexpectedly, phages U2 and LB grown on Salmonella bungori were unstable during centrifugation in a CsCl gradient. Ambivalent bacteriophages were found in species other than T-even phages and were similar in morphotype to lambdoid and other E. coli phages. One of the ambivalent phages was highly similar to well-known Felix01, which is specific for Salmonella. Ambivalent phages can be used to develop a new set for phage typing in Salmonella. An obvious advantage is that ambivalent phages can be reproduced in the E. coli K12 laboratory strain, which does not produce active temperate phages. Consequently, the resulting typing phage preparation is devoid of an admixture of temperate phages, which are common in Salmonella. The presence of temperate phages in phage-typing preparations may cause false-positive results in identifying specific Salmonella strains isolated from the environment or salmonellosis patients. Ambivalent phages are potentially useful for phage therapy and prevention of salmonellosis in humans and animals.  相似文献   

17.
A simple and rapid method is described for separation of T-even bacteriophage deoxyribonucleic acid (DNA) from host (Escherichia coli) DNA by hydroxyapatite column chromatography with a shallow gradient of phosphate buffer at neutral pH. By this method, bacteriophage T2, T4, and T6 DNA (but not T5, T7, or lambda DNA) could be separated from host E. coli DNA. It was found that glucosylation of the T-even phage DNA is an important factor in separation.  相似文献   

18.
In a recent publication Shames et al. (1973) concluded that the UV-specific T4 endonuclease (a repair enzyme coded for by the gene v of wild-type T4) is a component of extracellular phage, which is injected into the host cell and can perform an early repair step without requiring gene expression. This notion is, however, not supported by results presented in this paper. Lysates obtained from mixed multiple infection of Escherichia coli cells with T4v(1) (-) and T4v(+) (or T4v(2) (-) and T4v(+)) failed to show the expected phenotypic mixing, i.e., incorporation of UV endonuclease into capsids of v(-) phages resulting in recognizable repair. The fraction of v(+) and v(-) particles in such lysates was determined by single-plaque analysis before and after irradiation with a UV dose at which virtually all survivors are particles having undergone repair. Even though our mixed infection conditions were most favorable for the possible occurrence of phenotypic mixing, none out of several hundred individual plaques from survivors were found to be genotypically v(-), whereas 30 were expected in the case that phenotypically mixed v(-) particles were repaired like T4v(+). Our failure to observe phenotypic mixing suggests that the data by Shames et al. reflect intracellular synthesis of endonuclease after phage infection.  相似文献   

19.
I-TevI, a double-strand DNA endonuclease encoded by the mobile td intron of phage T4, has specificity for the intronless td allele. Genetic and physical studies indicate that the enzyme makes extensive contacts with its DNA substrate over at least three helical turns and around the circumference of the helix. Remarkably, no single nucleotide within a 48 bp region encompassing this interaction domain is essential for cleavage. Although two subdomains (DI and DII) contain preferred sequences, a third domain (DIII), a primary region of contact with the enzyme, displays much lower sequence preference. While DII and DIII suffice for recognition and binding of I-TevI, all three domains are important for formation of a cleavage-competent complex. Mutational, footprinting and interference studies indicate predominant interactions of I-TevI across the minor groove and phosphate backbone of the DNA. Contacts appear not to be at the single nucleotide level; rather, redundant interactions and/or structural recognition are implied. These unusual properties provide a basis for understanding how I-TevI recognizes T-even phage DNA, which is heavily modified in the major groove. These recognition characteristics may increase the range of natural substrates available to the endonuclease, thereby extending the invasive potential of the mobile intron.  相似文献   

20.
Control of the Replication Complex of Bacteriophage P22   总被引:7,自引:7,他引:0       下载免费PDF全文
A replication complex for the vegetative synthesis of the deoxyribonucleic acid (DNA) of the temperate phage P22 previously has been described. This complex is an association of parental phage DNA, most of the newly synthesized phage DNA made during pulses with (3)H-thymidine, and other cell constituents, and has a sedimentation rate in neutral sucrose gradients of at least 1,000S. The complex is one of the intermediates, intermediate I, in the synthesis and maturation of phage P22 DNA after infection or induction. Evidence supporting the replicative nature of intermediate I is presented. Phage replication is repressed in lysogenic bacteria. On superinfection of P22 lysogens with nonvirulent phage, little association of the input phage DNA with a rapidly sedimenting fraction is demonstrable. However, after induction with ultraviolet light, the superinfecting parental phage DNA quickly acquires the rapid sedimentation rate characteristic of intermediate I; phage DNA synthesis follows; and progeny phages are produced. Infection with a virulent mutant of P22 produces progeny phages in lysogens. Its DNA associates with intermediate I. In mixed infection with the virulent phage, replication of nonvirulent phage P22 is still repressed, even though the virulent replicates normally. The nonvirulent input DNA does not associate with intermediate I. The repressor of the lysogenic cell prevents replication by interfering with the physical association of template material with intermediate I. A phage function is required for association of phage template with the replication machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号