首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Arabidopsis and tomato plants mutated in the F-box protein COI1 mediating jasmonate (JA) responses are more susceptible to herbivores in laboratory trials, but the exact mechanisms of COI1-mediated resistance are not known. We silenced COI1 by transformation with an inverted repeat construct (ir-coi1) in Nicotiana attenuata, a plant the direct and indirect defenses of which against various herbivores have been well studied. ir-coi1 plants are male sterile and impaired in JA-elicited direct [nicotine, caffeoylputrescine and trypsin proteinase inhibitor (TPI) activity] and indirect (cis-alpha-bergamotene emission) defense responses; responses not elicited by JA treatment (ethylene production and flower TPI activity) were unaffected. Larvae of Manduca sexta, a common herbivore of N. attenuata, gained three times more mass feeding on ir-coi1 than on wild-type (WT) plants in glasshouse experiments. By regularly moving caterpillars to unattacked leaves of the same plant, we demonstrate that larvae on WT plants can grow and consume leaves as fast as those on ir-coi1 plants, a result that underscores the role of COI1 in mediating locally induced resistance in attacked leaves, and the importance of herbivore movement in avoiding the induced defenses of a plant. When transplanted into native habitats in the Great Basin Desert, ir-coi1 plants suffer greatly from damage by the local herbivore community, which includes herbivores not commonly found on N. attenuata WT plants. Choice assays with field-grown plants confirmed the increased attractiveness of ir-coi1 plants for both common and unusual herbivores. We conclude that NaCOI1 is essential for induced resistance in N. attenuata, and that ir-coi1 plants highlight the benefits of herbivore movement for avoiding induced defenses.  相似文献   

4.
Nicotiana attenuata α-DIOXYGENASE1 (α-DOX1) is an oxylipin-forming gene elicited during herbivory by fatty acid amino acid conjugates (FACs) contained in oral secretions of Manduca sexta. To understand the roles of Naα-DOX1 and its major product, 2-hydroxylinolenic acid (2-hydroxylinolenic acid), in N.?attenuata's anti-herbivore defenses, we used a transgenic line specifically silenced in Naα-DOX1 expression (ir-α-dox1) and monitored 2-HOT production in M.?sexta-damaged tissues and its role in influencing the production of direct defense compounds and resistance to this insect. Attack by M.?sexta larvae amplified 2-HOT formation at the feeding sites; a reaction probably facilitated by Naα-DOX1's high pH optimum which allows 2-HOT formation to occur in the more alkaline conditions at the feeding sites or potentially in the insect mouth parts after the leaf tissue is ingested. Manduca sexta larvae performed better on ir-α-dox1 plants than on wild-type (WT) plants as a result of attenuated herbivory-specific JA and 2-HOT bursts as well as JA-inducible well-established defenses (nicotine, caffeoylputrescine and trypsin proteinase inhibitors). Repeated applications of 2-HOT to wounds before insect feeding partly amplified JA-controlled defenses and restored the resistance of ir-α-dox1 plants. We conclude that 2-HOT, produced by attack-activated α-DOX1 activity, participates in defense activation during insect feeding.  相似文献   

5.
6.
7.
CORONATINE INSENSITIVE 1 (COI1) is a well-known key player in processes downstream of jasmonic acid (JA) biosynthesis: silencing COI1 in Nicotiana attenuata (ir-coi1) makes plants insensitive to JA, prevents the up-regulation of JA-mediated defenses and decreases the plant's resistance to herbivores and pathogens. In agreement with previous studies, we observed that regulation of several JA biosynthesis genes elicited by Manduca sexta oral secretions (OS) is COI1 dependent. In response to wounding and application of OS ir-coi1 plants accumulate 75% less JA compared with wild-type plants (WT), resembling JA levels found in plants silenced in the key enzyme in JA biosynthesis LIPOXYGENASE 3 (as-lox). However, while OS-elicited as-lox plants also accumulated lower levels of the JA-conjugate JA-isoleucine (JA-Ile) than did WT plants, JA-Ile accumulation in ir-coi1 was higher, prolonged and peaked with a delay of 30 min. In vivo substrate feeding experiments of N. attenuata demonstrate that the increased and prolonged JA-Ile accumulation pattern in ir-coi1 is not the result of altered substrate availability, i.e. of JA and/or Ile, but is due to an approximately 6-fold decrease in JA-Ile turnover. These results provide the first evidence for a second, novel regulatory feedback function of COI1 in enhancing JA-Ile turnover. Hence, in addition to its control over JA biosynthesis, COI1 might fine-tune the dynamics of the jasmonate response after induction by herbivore elicitors.  相似文献   

8.
9.
Root growth in Nicotiana attenuata is transiently reduced after application of oral secretions (OS) of Manduca sexta larvae to wounds in leaves. Feeding of M. sexta or OS elicitation is known to result in jasmonic acid (JA) and ethylene bursts, and activates a suite of defence responses. Because both plant hormones are known to strongly reduce root growth, their activation might account for the observed reduction of root growth following herbivory. To test this hypothesis, we measured primary root growth with digital image sequence processing at high temporal resolution in antisense- lipoxygenase 3 (as LOX3 ) and inverted repeat- coronatin-insensitive 1 (ir COI1 ) seedlings which are impaired in JA biosynthesis and perception, respectively, and wild-type (WT) seedlings. Higher root growth rates in ir COI1 compared with WT were observed after OS elicitation. The dynamics of wound-induced root growth reduction coincide with the dynamics of root growth reduction induced by external application of methyl JA. In an experiment with 1-methylcyclopropen (1-MCP), a potent ethylene receptor blocker, no wounding-specific difference between growth of 1-MCP-treated plants and non-treated plants was observed, suggesting that wound-induced endogenous JA and not ethylene mediates the wounding-specific reduction in root growth. Yet, inhibiting the ethylene response by applying 1-MCP led to markedly increased root growth compared with that of control plants, indicating that ethylene normally suppresses plant growth in N. attenuata seedlings.  相似文献   

10.
11.
12.
The plant hormone jasmonic acid (JA) plays a pivotal role in plant-insect interactions. Herbivore attack usually elicits dramatic increases in JA concentrations, which in turn activate the accumulation of metabolites that function as defenses against herbivores. Although almost all enzymes involved in the biosynthesis pathway of JA have been identified and characterized, the mechanism by which plants regulate JA biosynthesis remains unclear. Calcium-dependent protein kinases (CDPKs) are plant-specific proteins that sense changes in [Ca(2+)] to activate downstream responses. We created transgenic Nicotiana attenuata plants, in which two CDPKs, NaCDPK4 and NaCDPK5, were simultaneously silenced (IRcdpk4/5 plants). IRcdpk4/5 plants were stunted and aborted most of their flower primordia. Importantly, after wounding or simulated herbivory, IRcdpk4/5 plants accumulated exceptionally high JA levels. When NaCDPK4 and NaCDPK5 were silenced individually, neither stunted growth nor high JA levels were observed, suggesting that NaCDPK4 and NaCDPK5 have redundant roles. Attack from Manduca sexta larvae on IRcdpk4/5 plants induced high levels of defense metabolites that slowed M. sexta growth. We found that NaCDPK4 and NaCDPK5 affect plant resistance against insects in a JA- and JA-signaling-dependent manner. Furthermore, IRcdpk4/5 plants showed overactivation of salicylic-acid-induced protein kinase, a mitogen-activated protein kinase involved in various stress responses, and genetic analysis indicated that the increased salicylic-acid-induced protein kinase activity in IRcdpk4/5 plants was a consequence of the exceptionally high JA levels and was dependent on CORONATINE INSENSITIVE1. This work reveals the critical roles of CDPKs in modulating JA homeostasis and highlights the complex duet between JA and mitogen-activated protein kinase signaling.  相似文献   

13.
Stitz M  Baldwin IT  Gaquerel E 《PloS one》2011,6(10):e25925
A plant's inducible defenses against herbivores as well as certain developmental processes are known to be controlled by the jasmonic acid (JA) pathway. We have previously shown that ectopically expressing Arabidopsis thaliana JA O-methyltransferase in Nicotiana attenuata (35S-jmt) strongly reduces the herbivory-elicited jasmonate bursts by acting as metabolic sink that redirects free JA towards methylation; here we examine the consequences of this metabolic sink on N. attenuata's secondary metabolism and performance in nature. In the glasshouse, 35S-jmt plants produced fewer seed capsules due to shorter floral styles, which could be restored to wild type (WT) levels after hand-pollination, and were more susceptible to Manduca sexta larvae attack. When transplanted into the Great Basin Desert in Utah, 35S-jmt plants grew as well as WT empty vector, but were highly attacked by native herbivores of different feeding guilds: leaf chewers, miners, and single cell feeders. This greater susceptibility was strongly associated with reduced emissions of volatile organic compounds (hexenylesters, monoterpenes and sesquiterpenes) and profound alterations in the production of direct defenses (trypsin proteinase inhibitors [TPI], nicotine, diterpene glycosides [DTGs] and phenylpropanoid-polyamine conjugates) as revealed by a combination of targeted and metabolomics analyses of field collected samples. Complementation experiments with JA-Ile, whose formation is outcompeted in 35S-jmt plants by the methylation reaction, restored the local TPI activation to WT levels and partially complemented nicotine and DTG levels in elicited but not systemic leaves. These findings demonstrate that MeJA, the major JA metabolite in 35S-jmt plants, is not an active signal in defense activation and highlights the value of creating JA sinks to disrupt JA signaling, without interrupting the complete octadecanoid pathway, in order to investigate the regulation of plants' defense metabolism in nature.  相似文献   

14.
For most plant hormones, biological activity is suppressed by reversible conjugation to sugars, amino acids and other small molecules. In contrast, the conjugation of jasmonic acid (JA) to isoleucine (Ile) is known to enhance the activity of JA. Whereas hydroxylation and carboxylation of JA‐Ile permanently inactivates JA‐Ile‐mediated signaling in plants, the alternative deactivation pathway of JA‐Ile by its direct hydrolysis to JA remains unstudied. We show that Nicotiana attenuata jasmonoyl‐l ‐isoleucine hydrolase 1 (JIH1), a close homologue of previously characterized indoleacetic acid alanine resistant 3 (IAR3) gene in Arabidopsis, hydrolyzes both JA‐Ile and IAA‐Ala in vitro. When the herbivory‐inducible NaJIH1 gene was silenced by RNA interference, JA‐Ile levels increased dramatically after simulated herbivory in irJIH1, compared with wild‐type (WT) plants. When specialist (Manduca sexta) or generalist (Spodoptera littoralis) herbivores fed on irJIH1 plants they gained significantly less mass compared with those feeding on wild‐type (WT) plants. The poor larval performance was strongly correlated with the higher accumulation of several JA‐Ile‐dependent direct defense metabolites in irJIH1 plants. In the field, irJIH1 plants attracted substantially more Geocoris predators to the experimentally attached M. sexta eggs on their leaves, compared with empty vector plants, which correlated with higher herbivory‐elicited emissions of volatiles known to function as indirect defenses. We conclude that NaJIH1 encodes a new homeostatic step in JA metabolism that, together with JA and JA‐Ile‐hydroxylation and carboxylation of JA‐Ile, rapidly attenuates the JA‐Ile burst, allowing plants to tailor the expression of direct and indirect defenses against herbivore attack in nature.  相似文献   

15.
Inhibition of jasmonic acid (JA) signaling has been shown to decrease herbivore resistance, but the responsible mechanisms are largely unknown because insect resistance is poorly understood in most model plant systems. We characterize three members of the lipoxygenase (LOX) gene family in the native tobacco plant Nicotiana attenuata and manipulate, by antisense expression, a specific, wound- and herbivory-induced isoform (LOX3) involved in JA biosynthesis. In three independent lines, antisense expression reduced wound-induced JA accumulation but not the release of green leaf volatiles (GLVs). The impaired JA signaling reduced two herbivore-induced direct defenses, nicotine and trypsin protease inhibitors (TPI), as well as the potent indirect defense, the release of volatile terpenes that attract generalist predators to feeding herbivores. All these defenses could be fully restored by methyl-JA (MeJA) treatment, with the exception of the increase in TPI activity, which was partially restored, suggesting the involvement of additional signals. The impaired ability to produce chemical defenses resulted in lower resistance to Manduca sexta attack, which could also be restored by MeJA treatment. Expression analysis using a cDNA microarray, specifically designed to analyze M. sexta-induced gene expression in N. attenuata, revealed a pivotal role for LOX3-produced oxylipins in upregulating defense genes (protease inhibitor, PI; xyloglucan endotransglucosylase/hydrolase, XTH; threonine deaminase, TD; hydroperoxide lyase, HPL), suppressing both downregulated growth genes (RUBISCO and photosystem II, PSII) and upregulated oxylipin genes (alpha-dioxygenase, alpha-DOX). By genetically manipulating signaling in a plant with a well-characterized ecology, we demonstrate that the complex phenotypic changes that mediate herbivore resistance are controlled by a specific part of the oxylipin cascade.  相似文献   

16.
We examined performance of herbivores on plants lacking either jasmonate (JA, asLOX3) or ethylene (ET, mETR1) signaling or both (mETR1asLOX3). Plant defenses against Manduca sexta caterpillars were strongly impaired in JA-deficient asLOX3 plants; however, making asLOX3 plants ethylene insensitive did not further increase the performance of the larvae on a mETR1asLOX3 genetic cross. This result demonstrates the dominant role of JA over ET in the regulation of plant defenses against herbivores. However, ET-insensitivity combined with otherwise normal levels of JA in mETR1 plants promoted faster caterpillar growth, which correlated with reduced accumulation of the alkaloidal direct defense nicotine in mETR1 compared to WT plants. Our data points to an important accessory function of ET in the activation of JA-regulated plant defenses against herbivores at the level of alkaloid biosynthesis in the roots and/or accumulation in the leaves.Key words: herbivory, jasmonic acid and ethylene crosstalk, Nicotiana attenuata, nicotine, trypsin proteinase inhibitors (TPIs)  相似文献   

17.
18.
19.
20.
Folivory is the best studied plant-herbivore interaction, but it is unclear whether the signaling and resistance traits important for the defense of leaves are also important for other plant parts. Larvae of the tobacco stem weevil, Trichobaris mucorea, burrow into stems of Nicotiana attenuata and feed on the pith. Transgenic N. attenuata lines silenced in signaling and foliar defense traits were evaluated in a 2-year field study for resistance against attack by naturally occurring T. mucorea larva. Plants silenced in early jasmonic acid (JA) biosynthesis (antisense [as]-lipoxygenase3 [lox3]; inverted repeat [ir]-allene oxide cyclase), JA perception (as-coronatine insensitive1), proteinase inhibitors (ir-pi), and nicotine (ir-putrescine methyl-transferase) direct defenses and lignin (ir-cad) biosynthesis were infested more frequently than wild-type plants. Plants unable to emit C(6) aldehydes (as-hpl) had lower infestation rates, while plants silenced in late steps in JA biosynthesis (ir-acyl-coenzyme A oxidase, ir-opr) and silenced in diterpene glycoside production (ir-geranylgeranyl pyrophosphate synthase) did not differ from wild type. Pith choice assays revealed that ir-putrescine methyl-transferase, ir-coronatine insensitive1, and ir-lox3 pith, which all had diminished nicotine levels, were preferred by larvae compared to wild-type pith. The lack of preference for ir-lox2 and ir-cad piths, suggest that oviposition attraction and vascular defense, rather than pith palatability accounts for the higher attack rates observed for these plants. We conclude that traits that influence a plant's apparency, stem hardness, and pith direct defenses all contribute to resistance against this herbivore whose attack can be devastating to N. attenuata's fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号