首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tovote P  Lüthi A 《Neuron》2012,73(3):407-410
Oxytocin produces anxiolytic effects via the central nucleus of the amygdala but how the peptide reaches its receptors in this region has been unclear. In this issue of Neuron, Knobloch et?al. (2012) demonstrate that evoked oxytocin release from axon terminals within the central amygdala results in attenuation of fear.  相似文献   

2.
3.
4.
Eight to eleven amino acid residues are the sizes of predominant peptides found to be associated with MHC class I molecules. Proteasomes have been implicated in antigen processing and generation of such peptides. Advanced methodologies in peptide elution together with sequence determination have led to the characterisation of MHC class I binding motifs. More recently, screening of random peptide phage display libraries and synthetic combinatorial peptide libraries have also been successfully used. This has led to the development and use of predictive algorithms to screen antigens for potential CTL epitopes. Not all predicted epitopes will be generated in vivo and the emerging picture suggests differential presentation of predicted CTL epitopes ranging from cryptic to immunodominant. The scope of this review is to discuss antigen processing by proteasomes, and to put forward a hypothesis that the molecular basis of immunogenicity can be a function of proteasomal processing. This may explain how pathogens and tumours are able to escape immunosurveillance by altering sequences required by proteasomes for epitope generation. Abbreviations: CTL – cytotoxic T lymphocytes; DRiPs – defective ribosomal products; ER – endoplasmic reticulum; Hsps – heat shock proteins; LMP – low molecular weight peptide; MHC – major histocompatibility complex; TAP – transporter associated with antigen processing.  相似文献   

5.
Little is known about the development of presynaptic specializations. Recent studies that visualize tagged synaptic components in cultured cells and in vivo have identified molecular participants and reveal common features in cellular processes of presynaptic assembly.  相似文献   

6.
In the past, most treatments for retinal diseases have been empirical. Steroids and/or laser photocoagulation and/or surgery have been tried for almost every condition with little or no understanding of the underlying disease. Over the past several years vision researchers have uncovered molecular components of processes, such as visual transduction and the visual cycle, that are critical for visual function, and identified other molecules that lead to dysfunction and disease processes such as neovascularization and macular edema. It is becoming clear that dysregulation of certain molecules can have major effects on retinal structure and function. Studies in animal models have suggested that inhibiting or augmenting levels of a single molecule can have major effects in complex disease processes. Although several molecules probably contribute to neovascularization and excessive vascular permeability in the eye, blockade of vascular endothelial growth factor (VEGF) has remarkable beneficial effects in animal models that have now been proven to apply to human diseases in clinical trials. Intraocular injection of VEGF antagonists has revolutionized the treatment of choroidal neovascularization (CNV) and macular edema and serves as a model of targeted ocular pharmacotherapy. Significant progress elucidating the molecular pathogenesis of several disease processes in the eye may soon lead to new treatments following the lead of VEGF antagonists. Initial treatments that provide benefit from frequent intraocular injections are likely to be followed by sustained delivery of drugs and/or prolonged protein delivery by gene transfer. The eye has entered the era of molecular therapy.  相似文献   

7.
Ehrlichia chaffeensis is an obligately intracellular bacterium that exhibits tropism for mononuclear phagocytes and survives by reprogramming the host cell. Here we review new information regarding the newly characterized effector molecules and the complex network of molecular host–pathogen interactions that the organism exploits enabling it to thrive and persist intracellularly.  相似文献   

8.
The coordination of neuronal maturation and behavioral development is a vital component of survival. The degradation of excessive axonal processes and neuronal networks is a ubiquitous developmental process. In Drosophila, a great portion of axonal pruning occurs during metamorphosis and transpires within hours after pupation. In contrast, we show, using EM‐serial sectioning and 3D‐reconstructions, that axonal pruning occurs after eclosion and over the course of 60 days in Cataglyphis albicans. Using the mushroom bodies of the brains of Cataglyphis, which have well‐developed lip (olfactory integrator) and collar (visual integrator) regions, we show that axonal pruning is dependent upon the differences in the developmental trajectory of the lip and the collar brain regions and happens after eclosion. The elimination of the axonal boutons is most delayed in the collar region, where it is postponed until the ant has had extensive visual experience. We found that individual brain components within a single neuropil can develop at different rates that correlate with the behavioral ecology of these ants and suggest that glia may be mediating the axonal pruning. Our study provides evidence that adult ants may have relatively neotenous brains, and thus more flexibility, allowing them to neuronally adapt to the environment. This neoteny may, in part, explain the neural basis for age‐dependent division of labor and the amazing behavioral flexibility exhibited by ants. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

9.

Background

In order to determine whether human prostate can be productively infected by HIV-1 strains with different tropism, and thus represent a potential source of HIV in semen, an organotypic culture of prostate from men undergoing prostatic adenomectomy for benign prostate hypertrophy (BPH) was developed. The presence of potential HIV target cells in prostate tissues was investigated using immunohistochemistry. The infection of prostate explants following exposures with HIV-1 R5, R5X4 and X4 strains was analyzed through the measure of RT activity in culture supernatants, the quantification of HIV DNA in the explants and the detection of HIV RNA+ cells in situ.

Results

The overall prostate characteristics were retained for 21/2 weeks in culture. Numerous potential HIV-1 target cells were detected in the prostate stroma. Whilst HIV-1 R5SF162 strain consistently productively infected prostatic T lymphocytes and macrophages, the prototypic X4IIIB strain and a primary R5X4 strain showed less efficient replication in this organ.

Conclusion

The BPH prostate is a site of HIV-1 R5 replication that could contribute virus to semen. A limited spreading of HIV-1 X4 and R5X4 in this organ could participate to the preferential sexual transmission of HIV-1 R5 strains.  相似文献   

10.
The SCF ubiquitin ligase: insights into a molecular machine   总被引:10,自引:0,他引:10  
Ubiquitin ligases are well suited to regulate molecular networks that operate on a post-translational timescale. The F-box family of proteins - which are the substrate-recognition components of the Skp1-Cul1-F-box-protein (SCF) ubiquitin ligase - are important players in many mammalian functions. Here we explore a unifying and structurally detailed view of SCF-mediated proteolytic control of cellular processes that has been revealed by recent studies.  相似文献   

11.
Dutta, S., Hartkopf‐Fröder, C., Mann, U., Wilkes, H., Brocke, R. & Bertram, N. 2010: Macromolecular composition of Palaeozoic scolecodonts: insights into the molecular taphonomy of zoomorphs. Lethaia, Vol. 43, pp. 334–343. Biogeochemistry and molecular taphonomy of biopolymers of marine zoomorphs are poorly known. In order to obtain insights into this issue we report on the biogeomacromolecular composition of hand‐picked, well‐preserved scolecodonts of Ordovician, Silurian and Devonian age using micro‐Fourier transform infrared (micro‐FTIR) spectroscopy, Curie point pyrolysis‐gas chromatography‐mass spectrometry (Cupy‐GC‐MS) and tetramethylammonium hydroxide (TMAH)‐assisted thermochemolysis‐GC‐MS. The present study reveals that scolecodonts are composed of both aliphatic and aromatic moieties. The micro‐FTIR spectra of scolecodonts are characterized by aliphatic CHx (3000–2800 and 1460–1450/cm) and CH3 (1375/cm) absorptions and aromatic C=C (1560–1610/cm) and CH (3050/cm and 700–900/cm) absorptions. The major pyrolysis products from the scolecodonts include aromatic hydrocarbons such as alkylbenzenes, alkylnaphthalenes and alkylphenols. Aliphatic hydrocarbons are represented by a homologous series of n‐alkenes and n‐alkanes. The compounds released upon thermochemolysis with TMAH are saturated and unsaturated fatty acids (as their methyl esters), n‐alkenes/alkanes and aromatic acids (as their methyl esters). No protein/amino acid‐derived compounds have been recognized in the pyrolysates or in the thermochemolysates, and it is concluded that protein/amino acid‐related compounds, which are commonly found in the jaws of extant polychaetes, were destroyed due to diagenetic processes. Obviously, excellent morphological preservation and low thermal alteration are not paralleled by a similar degree of chemical preservation. □Biogeomacromolecules, micro‐FTIR, pyrolysis‐GC‐MS, scolecodonts, thermochemolysis‐GC‐MS.  相似文献   

12.
13.
The fusion of vesicles with target membranes is controlled by a complex network of protein-protein and protein-lipid interactions. Recently determined structures of the SNARE complex, synaptotagmin III, nSec1, domains of the NSF chaperone and its adaptor (SNAP), and Rab3 and some of its effectors provide the framework for developing molecular models of vesicle fusion and for designing experiments to test these models. Ultimately, knowledge of the structures of higher-order complexes and their dynamic behavior will be required to obtain a full understanding of the vesicle fusion protein machinery.  相似文献   

14.
Intriguing experimental and computational data are emerging to suggest that mechanical forces regulate the functional states of some proteins by stretching them into nonequilibrium states. Using the extracellular matrix protein fibronectin as an example, we discuss molecular design principles that might control the exposure of a protein's recognition sites, and/or their relative distances, in a force-dependent manner. Fibronectin regulates many cellular functions by binding directly to integrins. Although integrins have a key role in the transduction of force across the cell membrane by coupling the extracellular matrix to the cytoskeleton, the studies reviewed here suggest that fibronectin might be one of the molecules responsible for the initial transformation of mechanical force into a biochemical signal.  相似文献   

15.
Atherosclerosis is a complex disease involving genetic and environmental risk factors, acting on their own or in synergy. Within the general population, polymorphisms within genes in lipid metabolism, inflammation, and thrombogenesis are probably responsible for the wide range of susceptibility to myocardial infarction, a fatal consequence of atherosclerosis. Genetic linkage studies have been carried out in both humans and mouse models to identify these polymorphisms. Approximately 40 quantitative trait loci for atherosclerotic disease have been found in humans, and approximately 30 in mice. Recently, genome-wide association studies have been used to identify atherosclerosis-susceptibility polymorphisms. Although discovering new atherosclerosis genes through these approaches remains challenging, the pace at which these polymorphisms are being found is accelerating due to rapidly improving bioinformatics resources and biotechnologies. The outcome of these efforts will not only unveil the molecular basis of atherosclerosis but also facilitate the discovery of drug targets and individualized medication against the disease.  相似文献   

16.
The mechanisms of stress-induced mutagenesis in prokaryotes and realization of reserved (preaccumulated) genetic variation in eukaryotes are considered. In prokaryotes, replication becomes error-prone in stress because of the induction of the SOS response and the inactivation of the mismatch repair system; stress also increases the transposition rate and the efficiency of interspecific gene transfer. In eukaryotes, chaperone HSP90, which restores the native folding of mutant proteins (e.g., signal transduction and morphogenetic proteins) in normal conditions, fails to do so in stress, which leads to abrupt expression of multiple mutations earlier reserved in the corresponding genes. The role of these mechanisms in the evolution of prokaryotes and eukaryotes is discussed.  相似文献   

17.
It has been known for decades that branching morphogenesis of the lung is mediated through reciprocal interactions between the epithelium and its underlying mesenchyme. In recent years, several key players, in particular members of the major signaling pathways that mediate this interaction, have been identified. Here, we review the genetic and molecular studies of these key components, which have provided a conceptual framework for understanding the interactions of these major signaling pathways in branching morphogenesis. The future challenge is to translate understanding of the signaling cascade into knowledge of the cellular responses, including cell proliferation, migration and differentiation, that lead to the stereotyped branching.*  相似文献   

18.
Ghrelin is a multi-functional peptide hormone that affects a range of processes, including growth hormone and insulin release, appetite regulation, reproduction, and cancer cell proliferation. The main focus of this review is to advance the hypothesis that the ghrelin gene locus encodes an array of biologically active molecules in addition to ghrelin and is far more complex than currently appreciated. Alternative splicing and the use of alternative post-translational cleavages sites may give rise to novel ghrelin gene-derived peptides that potentially act through different receptors and have novel biological functions.  相似文献   

19.
Single-molecule fluorescence methods remain a challenging yet information-rich set of techniques that allow one to probe the dynamics, stoichiometry and conformation of biomolecules one molecule at a time. Viruses are small (nanometers) in size, can achieve cellular infections with a small number of virions and their lifecycle is inherently heterogeneous with a large number of structural and functional intermediates. Single-molecule measurements that reveal the complete distribution of properties rather than the average can hence reveal new insights into virus infections and biology that are inaccessible otherwise. This article highlights some of the methods and recent applications of single-molecule fluorescence in the field of virology. Here, we have focused on new findings in virus–cell interaction, virus cell entry and transport, viral membrane fusion, genome release, replication, translation, assembly, genome packaging, egress and interaction with host immune proteins that underline the advantage of single-molecule approach to the question at hand. Finally, we discuss the challenges, outlook and potential areas for improvement and future use of single-molecule fluorescence that could further aid our understanding of viruses.  相似文献   

20.
Most bacteria produce antibacterial proteins known as bacteriocins, which aid bacterial defence systems to provide a physiological advantage. To date, many kinds of bacteriocins have been characterized. Colicin has long been known as a plasmidborne bacteriocin that kills other Escherichia coli cells lacking the same plasmid. To defeat other cells, colicins exert specific activities such as ion-channel, DNase, and RNase activity. Colicin E5 and colicin D impair protein synthesis in sensitive E. coli cells; however, their physiological targets have not long been identified. This review describes our finding that colicins E5 and D are novel RNases targeting specific E. coli tRNAs and elucidates their enzymatic properties based on biochemical analyses and X-ray crystal structures. Moreover, tRNA cleavage mediates bacteriostasis, which depends on trans-translation. Based on these results and others, cell growth regulation depending on tRNA cleavage is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号