首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many bacteria control gene expression in response to cell population density, and this phenomenon is called quorum sensing. In Gram-negative bacteria, quorum sensing typically involves the production, release and detection of acylated homoserine lactone signalling molecules called autoinducers. Vibrio harveyi, a Gram-negative bioluminescent marine bacterium, regulates light production in response to two distinct autoinducers (AI-1 and AI-2). AI-1 is a homoserine lactone. The structure of AI-2 is not known. We have suggested previously that V. harveyi uses AI-1 for intraspecies communication and AI-2 for interspecies communication. Consistent with this idea, we have shown that many species of Gram-negative and Gram-positive bacteria produce AI-2 and, in every case, production of AI-2 is dependent on the function encoded by the luxS gene. We show here that LuxS is the AI-2 synthase and that AI-2 is produced from S-adenosylmethionine in three enzymatic steps. The substrate for LuxS is S-ribosylhomocysteine, which is cleaved to form two products, one of which is homocysteine, and the other is AI-2. In this report, we also provide evidence that the biosynthetic pathway and biochemical intermediates in AI-2 biosynthesis are identical in Escherichia coli, Salmonella typhimurium, V. harveyi, Vibrio cholerae and Enterococcus faecalis. This result suggests that, unlike quorum sensing via the family of related homoserine lactone autoinducers, AI-2 is a unique, 'universal' signal that could be used by a variety of bacteria for communication among and between species.  相似文献   

2.
In a process called quorum sensing, bacteria communicate with one another by exchanging chemical signals called autoinducers. In the bioluminescent marine bacterium Vibrio harveyi, two different auto inducers (AI-1 and AI-2) regulate light emission. Detection of and response to the V.harveyi autoinducers are accomplished through two two-component sensory relay systems: AI-1 is detected by the sensor LuxN and AI-2 by LuxPQ. Here we further define the V.harveyi quorum-sensing regulon by identifying 10 new quorum-sensing-controlled target genes. Our examination of signal processing and integration in the V.harveyi quorum-sensing circuit suggests that AI-1 and AI-2 act synergistically, and that the V.harveyi quorum-sensing circuit may function exclusively as a 'coincidence detector' that discriminates between conditions in which both autoinducers are present and all other conditions.  相似文献   

3.
In processes regulated by quorum sensing (QS) bacteria respond to the concentration of autoinducers in the environment to engage in group behaviours. Autoinducer-2 (AI-2) is unique as it can foster interspecies communication. Currently, two AI-2 receptors are known, LuxP and LsrB, but bacteria lacking these receptors can also respond to AI-2. In this work, we present an efficient and reproducible synthesis of a novel chemical probe, d-desthiobiotin-AI-2. This probe binds both LuxP and LsrB receptors from different species of bacteria. Thus, this probe is able to bind receptors that recognise the two known biologically active forms of AI-2, presenting the plasticity essential for the identification of novel unknown AI-2 receptors. Moreover, a protocol to pull down receptors bound to d-desthiobiotin-AI-2 with anti-biotin antibodies has also been established. Altogether, this work highlights the potential of conjugating chemical signals to biotinylated derivatives to identify and tag signal receptors involved in quorum sensing or other chemical signalling processes.  相似文献   

4.
Bacteria coordinate population-dependent behaviors such as virulence by intra- and inter-species communication (quorum sensing). Autoinducer-2 (AI-2) regulates inter-species quorum sensing. AI-2 derives from the spontaneous cyclisation of linear (S)-4,5-dihydroxypentanedione (DPD) into two isomeric forms in dynamic equilibrium. Different species of bacteria have different classes of AI-2 receptors (LsrB and LuxP) which bind to different cyclic forms. In the present work, DPD analogs with a new stereocenter at C-5 (4,5-dihydroxyhexanediones (DHDs)) have been synthesized and their biological activity tested in two bacteria. (4S,5R)-DHD is a synergistic agonist in Escherichia coli (which contains the LsrB receptor), while it is an agonist in Vibrio harveyi (LuxP), displaying the strongest agonistic activity reported so far (EC(50)=0.65μM) in this organism. Thus, modification at C-5 opens the way to novel methods to manipulate quorum sensing as a method for controlling bacteria.  相似文献   

5.
Our previous studies showed that the Aggregatibacter actinomycetemcomitans RbsB protein interacts with cognate and heterologous autoinducer 2 (AI-2) signals and suggested that the rbsDABCK operon encodes a transporter that may internalize AI-2 (D. James et al., Infect. Immun. 74:4021-4029, 2006.). However, A. actinomycetemcomitans also possesses genes related to the lsr operon of Salmonella enterica serovar Typhimurium which function to import AI-2. Here, we show that A. actinomycetemcomitans LsrB protein competitively inhibits the interaction of the Vibrio harveyi AI-2 receptor (LuxP) with AI-2 from either A. actinomycetemcomitans or V. harveyi. Interestingly, LsrB was a more potent inhibitor of LuxP interaction with AI-2 from V. harveyi whereas RbsB competed more effectively with LuxP for A. actinomycetemcomitans AI-2. Inactivation of lsrB in wild-type A. actinomycetemcomitans or in an isogenic RbsB-deficient strain reduced the rate by which intact bacteria depleted A. actinomycetemcomitans AI-2 from solution. Consistent with the results from the LuxP competition experiments, the LsrB-deficient strain depleted AI-2 to a lesser extent than the RbsB-deficient organism. Inactivation of both lsrB and rbsB virtually eliminated the ability of the organism to remove AI-2 from the extracellular environment. These results suggest that A. actinomycetemcomitans possesses two proteins that differentially interact with AI-2 and may function to inactivate or facilitate internalization of AI-2.  相似文献   

6.
Many bacterial species respond to the quorum-sensing signal autoinducer-2 (AI-2) by regulating different niche-specific genes. Here, we show that Sinorhizobium meliloti, a plant symbiont lacking the gene for the AI-2 synthase, while not capable of producing AI-2 can nonetheless respond to AI-2 produced by other species. We demonstrate that S. meliloti has a periplasmic binding protein that binds AI-2. The crystal structure of this protein (here named SmlsrB) with its ligand reveals that it binds (2R,4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran (R-THMF), the identical AI-2 isomer recognized by LsrB of Salmonella typhimurium. The gene encoding SmlsrB is in an operon with orthologues of the lsr genes required for AI-2 internalization in enteric bacteria. Accordingly, S. meliloti internalizes exogenous AI-2, and mutants in this operon are defective in AI-2 internalization. S. meliloti does not gain a metabolic benefit from internalizing AI-2, suggesting that AI-2 functions as a signal in S. meliloti. Furthermore, S. meliloti can completely eliminate the AI-2 secreted by Erwinia carotovora, a plant pathogen shown to use AI-2 to regulate virulence. Our findings suggest that S. meliloti is capable of 'eavesdropping' on the AI-2 signalling of other species and interfering with AI-2-regulated behaviours such as virulence.  相似文献   

7.
Autoinducer 2 (AI-2), which enables different bacterial species to engage in interspecies communication, has been difficult to detect quantitatively. Currently, the most commonly used method for AI-2 detection employs an engineered Vibrio harveyi reporter strain, which produces bioluminescence in response to AI-2. However, the bioassay is not quantitative and is sensitive to assay conditions. In this work, we have developed two protein sensors for AI-2 by modifying AI-2 receptor proteins LuxP and LsrB with environmentally sensitive fluorescent dyes. The protein sensors bind specifically to AI-2 and produce dose-dependent changes in their fluorescence yield. The new assay method has been applied to monitor the enzymatic synthesis of AI-2 in real time and determine the extracellular and intracellular AI-2 concentrations in several bacterial culture fluids.  相似文献   

8.
Two independent quorum-sensing systems control the expression of bioluminescence (lux) in the marine bacterium Vibrio harveyi. Each system is composed of an autoinducer (AI-1 or AI-2) and its cognate sensor (LuxN or LuxQ). The sensors are two-component hybrid kinases, containing both sensor kinase domains and response regulator domains. Sensory information from the two systems is relayed by a phosphotransfer mechanism to a shared integrator protein called LuxO. LuxO is a member of the response regulator class of the two-component family of signal transduction proteins, and LuxO acts negatively to control luminescence. In this report, missense and in frame deletion mutations were constructed in luxO that encoded proteins mimicking either the phosphorylated or the unphosphorylated form, and these mutations were introduced into the V. harveyi chromosome at the luxO locus. Phenotypical analyses of the resulting mutant V. harveyi strains indicate that the phosphorylated form of LuxO is the repressor, and that the unphosphorylated form of the protein is inactive. Analysis of the lux phenotypes of V. harveyi strains containing single and double luxN and luxQ mutations indicate that LuxN and LuxQ have two activities on LuxO. They act as LuxO protein kinases at low cell density in the absence of autoinducers, and they switch to LuxO protein phosphatases at high cell density in the presence of autoinducers. Furthermore, the timing and potency of inputs from the two systems into regulation of quorum sensing are different.  相似文献   

9.
Bacteria sense their environment using receptors of the histidine sensor kinase family, but how kinase activity is regulated by ligand binding is not well understood. Autoinducer-2 (AI-2), a secreted signaling molecule originally identified in studies of the marine bacterium Vibrio harveyi, regulates quorum-sensing responses and allows communication between different bacterial species. AI-2 signal transduction in V. harveyi requires the integral membrane receptor LuxPQ, comprised of periplasmic binding protein (LuxP) and histidine sensor kinase (LuxQ) subunits. Combined X-ray crystallographic and functional studies show that AI-2 binding causes a major conformational change within LuxP, which in turn stabilizes a quaternary arrangement in which two LuxPQ monomers are asymmetrically associated. We propose that formation of this asymmetric quaternary structure is responsible for repressing the kinase activity of both LuxQ subunits and triggering the transition of V. harveyi into quorum-sensing mode.  相似文献   

10.
Helicobacter pylori possesses a homolog of the luxS gene, initially identified by its role in autoinducer production for the quorum-sensing system 2 in Vibrio harveyi. The genomes of several other species of bacteria, notably Escherichia coli, Salmonella enterica serovar Typhimurium, and Vibrio cholerae, also include luxS homologs. All of these bacteria have been shown to produce active autoinducers capable of stimulating the expression of the luciferase operon in V. harveyi. In this report, we demonstrate that H. pylori also synthesizes a functional autoinducer (AI-2) that can specifically activate signaling system 2 in V. harveyi. Maximal activity is produced during early log phase, and the activity is diminished when cells enter stationary phase. We show that AI-2 is not involved in modulating any of the known or putative virulence factors in H. pylori and that a luxS null mutant has a two-dimensional protein profile identical to that of its isogenic parent strain. We discuss the implications of having an AI-2-like quorum-sensing system in H. pylori and suggest possible roles that it may play in H. pylori infection.  相似文献   

11.
In a process called quorum sensing, bacteria communicate with one another using secreted chemical signalling molecules termed autoinducers. A novel autoinducer called AI-2, originally discovered in the quorum-sensing bacterium Vibrio harveyi, is made by many species of Gram-negative and Gram-positive bacteria. In every case, production of AI-2 is dependent on the LuxS autoinducer synthase. The genes regulated by AI-2 in most of these luxS-containing species of bacteria are not known. Here, we describe the identification and characterization of AI-2-regulated genes in Salmonella typhimurium. We find that LuxS and AI-2 regulate the expression of a previously unidentified operon encoding an ATP binding cassette (ABC)-type transporter. We have named this operon the lsr (luxS regulated) operon. The Lsr transporter has homology to the ribose transporter of Escherichia coli and S. typhimurium. A gene encoding a DNA-binding protein that is located adjacent to the Lsr transporter structural operon is required to link AI-2 detection to operon expression. This gene, which we have named lsrR, encodes a protein that represses lsr operon expression in the absence of AI-2. Mutations in the lsr operon render S. typhimurium unable to eliminate AI-2 from the extracellular environment, suggesting that the role of the Lsr apparatus is to transport AI-2 into the cells. It is intriguing that an operon regulated by AI-2 encodes functions resembling the ribose transporter, given recent findings that AI-2 is derived from the ribosyl moiety of S-ribosylhomocysteine.  相似文献   

12.
In a process called quorum sensing, bacteria communicate using extracellular signal molecules termed autoinducers. Two parallel quorum-sensing systems have been identified in the marine bacterium Vibrio harveyi. System 1 consists of the LuxM-dependent autoinducer HAI-1 and the HAI-1 sensor, LuxN. System 2 consists of the LuxS-dependent autoinducer AI-2 and the AI-2 detector, LuxPQ. The related bacterium, Vibrio cholerae, a human pathogen, possesses System 2 (LuxS, AI-2, and LuxPQ) but does not have obvious homologues of V. harveyi System 1. Rather, System 1 of V. cholerae is made up of the CqsA-dependent autoinducer CAI-1 and a sensor called CqsS. Using a V. cholerae CAI-1 reporter strain we show that many other marine bacteria, including V. harveyi, produce CAI-1 activity. Genetic analysis of V. harveyi reveals cqsA and cqsS, and phenotypic analysis of V. harveyi cqsA and cqsS mutants shows that these functions comprise a third V. harveyi quorum-sensing system that acts in parallel to Systems 1 and 2. Together these communication systems act as a three-way coincidence detector in the regulation of a variety of genes, including those responsible for bioluminescence, type III secretion, and metalloprotease production.  相似文献   

13.
Cell-to-cell communication in bacteria is mediated by quorum-sensing systems (QSS) that produce chemical signal molecules called autoinducers (AI). In particular, LuxS/AI-2-dependent QSS has been proposed to act as a universal lexicon that mediates intra- and interspecific bacterial behavior. Here we report that the model organism Bacillus subtilis operates a luxS-dependent QSS that regulates its morphogenesis and social behavior. We demonstrated that B. subtilis luxS is a growth-phase-regulated gene that produces active AI-2 able to mediate the interspecific activation of light production in Vibrio harveyi. We demonstrated that in B. subtilis, luxS expression was under the control of a novel AI-2-dependent negative regulatory feedback loop that indicated an important role for AI-2 as a signaling molecule. Even though luxS did not affect spore development, AI-2 production was negatively regulated by the master regulatory proteins of pluricellular behavior, SinR and Spo0A. Interestingly, wild B. subtilis cells, from the undomesticated and probiotic B. subtilis natto strain, required the LuxS-dependent QSS to form robust and differentiated biofilms and also to swarm on solid surfaces. Furthermore, LuxS activity was required for the formation of sophisticated aerial colonies that behaved as giant fruiting bodies where AI-2 production and spore morphogenesis were spatially regulated at different sites of the developing colony. We proposed that LuxS/AI-2 constitutes a novel form of quorum-sensing regulation where AI-2 behaves as a morphogen-like molecule that coordinates the social and pluricellular behavior of B. subtilis.  相似文献   

14.
The extracellular signaling molecule autoinducer-2 (AI-2) mediates quorum-sensing communication in diverse bacterial species. In marine vibrios, binding of AI-2 to the periplasmic receptor LuxP modulates the activity of the inner membrane sensor kinase LuxQ, transducing the AI-2 information into the cytoplasm. Here, we show that Vibrio harveyi LuxP associates with LuxQ in both the presence and absence of AI-2. The 1.9 A X-ray crystal structure of apoLuxP, complexed with the periplasmic domain of LuxQ, reveals that the latter contains two tandem Per/ARNT/Simple-minded (PAS) folds. Thus, although many prokaryotic PAS folds themselves bind ligands, the LuxQ periplasmic PAS folds instead bind LuxP, monitoring its AI-2 occupancy. Mutations that disrupt the apoLuxP:LuxQ interface sensitize V. harveyi to AI-2, implying that AI-2 binding causes the replacement of one set of LuxP:LuxQ contacts with another. These conformational changes switch LuxQ between two opposing enzymatic activities, each of which conveys information to the cytoplasm about the cell density of the surrounding environment.  相似文献   

15.
16.
17.
AI-2 is an autoinducer made by many bacteria. LsrB binds AI-2 in the periplasm, and Tsr is the l-serine chemoreceptor. We show that AI-2 strongly attracts Escherichia coli. Both LsrB and Tsr are necessary for sensing AI-2, but AI-2 uptake is not, suggesting that LsrB and Tsr interact directly in the periplasm.  相似文献   

18.
The Gram-negative bacterium Vibrio harveyi produces and responds to three autoinducers, AI-1, AI-2, and CAI-1 to regulate cell density dependent gene expression by a process referred to as quorum sensing. The concentration of the autoinducers is sensed by three cognate hybrid sensor kinases, and information is channeled via the HPt protein LuxU to the response regulator LuxO. Here, a detailed biochemical study on the enzymatic activities of the membrane-integrated hybrid sensor kinase LuxN, the sensor for N-(d-3-hydroxybutanoyl)homoserine lactone (AI-1), is provided. LuxN was heterologously overproduced as the full-length protein in Escherichia coli. LuxN activities were characterized in vitro and are an autophosphorylation activity with an unusually high ATP turnover rate, stable LuxU phosphorylation, and a slow phosphatase activity with LuxU approximately P as substrate. The presence of AI-1 affected the kinase but not the phosphatase activity of LuxN. The influence of AI-1 on the LuxN--> LuxU signaling step was monitored, and in the presence of AI-1, the kinase activity of LuxN, and hence the amount of LuxU approximately P produced, were significantly reduced. Half-maximal inhibition of kinase activity by AI-1 occurred at 20 mum. Together, these results indicate that AI-1 directly interacts with LuxN to down-regulate its autokinase activity and suggest that the key regulatory step of the AI-1 quorum sensing system of Vibrio harveyi is AI-1-mediated repression of the LuxN kinase activity.  相似文献   

19.
AI-2,一种新的细菌自体诱导分子   总被引:2,自引:0,他引:2  
李华林  闻玉梅 《生命科学》2004,16(3):138-143
细菌通过数量阈值感应系统调节群体内个体的基因表达而使整个群体步调一致。细菌通过感应自体诱导分子(autoinducer,AI)浓度而感知周围环境中同类存在的密度,并据此调节自身特定性状的表达。AI.2是近年来新发现的一种介导细菌种间信号传导的自体诱导分子,其分子结构、功能均不同于传统的A1分子。AI.2对细菌的调节作用主要表现为对毒力基因表达的影响,但目前也有人认为AI-2可能只是一种代谢产物。  相似文献   

20.
很多细菌在生长过程中会产生一些小分子量的自诱导分子,也称为信号分子,当其随着细胞数量增加而积累到一定阈值时能够调控细菌特定基因的表达,这个过程称为群体感应(Quorum sensing,QS)。多数自诱导分子具有物种特异性,但很多种属的细菌都会产生一种共同的自诱导分子AI-2,AI-2被认为是细菌种间交流的通用语言。定量检测AI-2对于研究与其相关的生理生化过程是非常必要的。然而,目前还没有一种标准的定量检测AI-2的方法。因此,本文就目前关于AI-2的检测方法进行综述,为后续研究者提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号