共查询到20条相似文献,搜索用时 0 毫秒
1.
《Biocatalysis and Biotransformation》2013,31(2-3):141-151
The effect of organic solvents on carboxypeptidase Y (a serine carboxypeptidase from yeast)-catalyzed hydrolysis of amino acid ester and peptide synthesis from N-acyl amino acid ester and amino acid amide was investigated.The Km value of ester hydrolysis increased with an increase in the solvent content. Dioxane was the most effective and dimethyl sulfoxide (DMSO) the least, whilst Kcat showed a tendency to increase slightly in N, N-dimethylformamide (DMF) and DMSO. For dioxane and acetonitrile (MeCN) a maximum was observed.In peptide formation from Fua-Phe-OEt and Gly-NH2, dioxane and MeCN supported high product yield at molar fractions smaller than ca. 0.05 but the yield decreased significantly at higher fractions, although a relatively constant selectivity (ratio of the peptide bond formed to the ester consumed) was maintained. DMSO gave rather low peptide yields and selectivity even at lower molar fractions. DMF showed an intermediate tendency.An apparent saturation parameter of the amine component was evaluated and the dissociation constant of a complex between acyl-enzyme and amino acid amide (Kn), as well as the rate constant of aminolysis exerted by the amino acid amide bound correctly on the enzyme (Kn), was calculated by initial rate analysis of peptide formation. In contrast to Km values, Kn decreased with increasing concentrations of organic cosolvent. while a suppressive effect was observed (except for DMSO) on the Kn parameter.Effects of the solvent practically immiscible in water was also studied by use of the enzyme physically “immobilized” on glass beads. 相似文献
2.
The effect of four organic solvents on β-fructofuranosidase mediated synthesis of oligosaccharides from sucrose were investigated. Amongst the solvents examined, butyl acetate proved to be the best for oligosaccharide synthesis. Starting with the equivalent of 44.6 g/L of sucrose, 247 U of enzyme and 91.6% (by vol.) of butyl acetate results in the production of 8.8 g/L of oligosaccharides within 30 min, with trisaccharides constituting more than 60% of the oligosaccharides. The efficiency for conversion of sucrose to oligosaccharides is greater than 19%, and this exceeds the 11.6% (in 24 h) previously achieved with 1271 U of the same enzyme in aqueous medium. Use of butyl acetate as the bulk phase therefore modifies the reaction environment in favour of enhanced and accelerated rate of oligosaccharide synthesis by this β-fructofuranosidase. 相似文献
3.
有机溶剂中固定化脂肪酶催化硅醇的酯化反应 总被引:4,自引:0,他引:4
固定化Mucor miehei脂肪酶可催化有机硅醇和脂肪酸的酯化反应.对固定化酶用量、脂肪酸链长、不同有机硅醇底物、有机溶剂极性和水含量等影响因素进行了初步研究. 相似文献
4.
5.
Carboxypeptidase activity was studied in subcellular fractions from a transplantable rat insulinoma and found to be localised principally in the insulin secretory granule. The activity, which was specific for peptide substrates with C-terminal basic amino acids, appeared to be a single enzyme with Mr 54 000. This enzyme differed with respect to size and pH optimum from other basic amino acid-specific carboxypeptidases, such as carboxypeptidases B and N, and may be a secretory granule-specific enzyme involved in propolypeptide processing. 相似文献
6.
有机相酶促酯化反应中水分调控技术的研究 总被引:2,自引:0,他引:2
在有机相酶促反应中,水含量是影响酶活力的关键因素.对异辛烷/正辛醇体系中柱状假丝酵母脂肪酶催化萘普森酯化反应中的水分调控技术进行了研究. 结果表明:水合盐对——Na2SO4·10H2O/Na2SO4对系统水分的变化具有有效的缓冲作用;非极性硅藻土吸附固定酶,使之对水分的敏感性得到缓解;另外,加入分子筛去除副产物——“水”可促进酯化过程的进行. 相似文献
7.
Processing of Procarboxypeptidase E into Carboxypeptidase E Occurs in Secretory Vesicles 总被引:2,自引:0,他引:2
Abstract: Carboxypeptidase E (CPE) functions in the posttranslational processing of bioactive peptides. Like other peptide processing enzymes, CPE is initially produced as a precursor ("proCPE") that undergoes posttranslational processing at a site containing five adjacent Arg residues near the N-terminus and at other sites near the C-terminus of proCPE. The time course of the N-terminal processing step suggests that this conversion occurs in either the Golgi apparatus or the secretory vesicles. To delineate further the site of proCPE processing, pulse/chase analysis was performed under conditions that block transit out of the Golgi apparatus (brefeldin A, carbonyl cyanide m -chlorophenylhydrazone, or 20°C) or that block acidification of vesicles (chloroquine, monensin, or ammonium chloride). The results of these analysis suggest that efficient proCPE processing requires an acidic post-Golgi compartment. To test whether known processing enzymes can perform this cleavage, purified proCPE was incubated with furin, prohormone convertase 1, or a dynorphin converting enzyme, and the products were analyzed on denaturing polyacrylamide gels. Furin cleaves proCPE within the N-terminal region, although the reaction is not very efficient, requiring relatively large amounts of furin or long incubation times. The other two peptide processing enzymes did not cleave proCPE, whereas a relatively small amount of secretory granule extract was able to convert proCPE into CPE. Taken together, these findings suggest that the conversion of proCPE into CPE occurs primarily in secretory vesicles. 相似文献
8.
Arastoo Badoei-Dalfard Zahra Karami Hadi Ravan 《Preparative biochemistry & biotechnology》2013,43(2):128-143
Bacillus sp. JER02 is a bacterial strain that can be grown in a medium containing organic solvents and produce a protease enzyme. JER02 protease was purified with a yield of 31.9% of total protein and 328.83-fold purification. K m and Vmax of this protease were established as 0.826 µM and 7.18 µmol/min, respectively. JER02 protease stability was stimulated about 80% by cyclohexane. It exhibited optimum temperature activity at 70°C. Furthermore, this enzyme was active in a wide range of pH (4-12) and showed maximum activity at pH 9.0. The nonionic detergents Tween-20 and Triton X-100 improved the protease activity by 30 and 20%, respectively. In addition, this enzyme was shown to be very stable in the presence of strong anionic surfactants and oxidizing agents, since it retained 77%, 93%, and 98% of its initial activity, after 1 hr of incubation at room temperature with sodium dodecyl sulfate (SDS), sodium perborate (1%, v/v) and H2O2 (1%, v/v), respectively. Overall, the unique properties of the Bacillus sp. JER02 protease suggested that this thermo- and detergent-stable, solvent-tolerant protease has great potential for industrial applications. 相似文献
9.
The first metallocarboxypeptidase (CP) was identified in pancreatic extracts more than 80 years ago and named carboxypeptidase A (CPA; now known as CPA1). Since that time, seven additional mammalian members of the CPA subfamily have been described, all of which are initially produced as proenzymes, are activated by endoproteases, and remove either C-terminal hydrophobic or basic amino acids from peptides. Here we describe the enzymatic and structural properties of carboxypeptidase O (CPO), a previously uncharacterized and unique member of the CPA subfamily. Whereas all other members of the CPA subfamily contain an N-terminal prodomain necessary for folding, bioinformatics and expression of both human and zebrafish CPO orthologs revealed that CPO does not require a prodomain. CPO was purified by affinity chromatography, and the purified enzyme was able to cleave proteins and synthetic peptides with greatest activity toward acidic C-terminal amino acids unlike other CPA-like enzymes. CPO displayed a neutral pH optimum and was inhibited by common metallocarboxypeptidase inhibitors as well as citrate. CPO was modified by attachment of a glycosylphosphatidylinositol membrane anchor to the C terminus of the protein. Immunocytochemistry of Madin-Darby canine kidney cells stably expressing CPO showed localization to vesicular membranes in subconfluent cells and to the plasma membrane in differentiated cells. CPO is highly expressed in intestinal epithelial cells in both zebrafish and human. These results suggest that CPO cleaves acidic amino acids from dietary proteins and peptides, thus complementing the actions of well known digestive carboxypeptidases CPA and CPB. 相似文献
10.
Carboxypeptidase A6 (CPA6) is an extracellular matrix-bound metallocarboxypeptidase (CP) that has been implicated in Duane syndrome, a neurodevelopmental disorder in which the lateral rectus extraocular muscle is not properly innervated. Consistent with a role in Duane syndrome, CPA6 is expressed in a number of chondrocytic and nervous tissues during embryogenesis. To better characterize the enzymatic function and specificity of CPA6 and to compare this with other CPs, CPA6 was expressed in HEK293 cells and purified. Kinetic parameters were determined using a panel of synthetic carboxypeptidase substrates, indicating a preference of CPA6 for large hydrophobic C-terminal amino acids and only very weak activity toward small amino acids and histidine. A quantitative peptidomics approach using a mixture of peptides representative of the neuropeptidome allowed the characterization of CPA6 preferences at the P1 substrate position and suggested that small and acidic P1 residues significantly inhibit CPA6 cleavage. Finally, a comparison of available kinetic data for CPA enzymes shows a gradient of specificity across the subfamily, from the very restricted specificity of CPA2 to the very broad activity of CPA4. Structural data and modeling for all CPA/B subfamily members suggests the structural basis for the unique specificities observed for each member of the CPA/B subfamily of metallocarboxypeptidases. 相似文献
11.
The effects of organic solvents on the reaction rate and equilibrium of the ribosyl transfer reaction catalyzed by thermostable purine nucleoside phosphorylase and pyrimidine nucleoside phosphorylase from Bacillus stearothermophilus JTS 859 were examined at 60°C. The reaction rate in the presence of 10% acetone was 1.6 times higher than that of the control. Acetone was the best organic solvent among those tested for accelerating the reaction rate without denaturing the enzymes. On the other hand, the reaction rate in the presence of 5% ethyl acetate was 1.5 times higher than that of the control. However the enzymes were denatured completely after 1 h incubation. Consequently, the acceleration was not attributed to the stabilization of the enzymes. The equilibrium constants of the reaction were not influenced by the presence of acetone, methyl or ethyl alcohols. 相似文献
12.
《Biocatalysis and Biotransformation》2013,31(4):297-304
The effects of organic solvents on the reaction rate and equilibrium of the ribosyl transfer reaction catalyzed by thermostable purine nucleoside phosphorylase and pyrimidine nucleoside phosphorylase from Bacillus stearothermophilus JTS 859 were examined at 60°C. The reaction rate in the presence of 10% acetone was 1.6 times higher than that of the control. Acetone was the best organic solvent among those tested for accelerating the reaction rate without denaturing the enzymes. On the other hand, the reaction rate in the presence of 5% ethyl acetate was 1.5 times higher than that of the control. However the enzymes were denatured completely after 1 h incubation. Consequently, the acceleration was not attributed to the stabilization of the enzymes. The equilibrium constants of the reaction were not influenced by the presence of acetone, methyl or ethyl alcohols. 相似文献
13.
Ulijn RV De Martin L Gardossi L Janssen AE Moore BD Halling PJ 《Biotechnology and bioengineering》2002,80(5):509-515
Thermolysin catalyzed solid-to-solid synthesis of the model peptide Z-L-Phe-L-Leu-NH(2) is practically feasible in water and a range of organic solvents with different physicochemical properties. Excellent overall conversions were obtained in acetonitrile, ethyl acetate, n-hexane, methanol, 2-propanol, tert-amyl alcohol, tetrahydrofuran, toluene and water, while no product precipitation was observed in dichloromethane resulting in a much lower yield. In precipitation driven synthesis the product accumulates both in solution and in the solid phase. It was shown that the highest overall yields (yield in the liquid plus yield in the solid) can be expected in solvents where the substrate solubilities are minimized. The best yields of solid product can be expected in solvents where both product and substrate solubilities are lowest. This was in agreement with experimental observations and should be generally valid. 相似文献
14.
《Bioscience, biotechnology, and biochemistry》2013,77(9):1939-1941
Phospholipase D (PLD)-mediated transphosphatidylation of phosphatidylcholine (PC) in a biphasic system was limited by the hydrolysis reaction. A biphasic system can produce a large amount of water. To solve this problem, a microaqueous water-immiscible organic solvent was used for the first time in the bioconversion of phosphatidylserine (PS). The transphosphatidylation among 40 µmol PC, 800 µmol L-serine, and 0.17 U/mL PLD in 2.133 mL of butyl acetate with 6.25% water (V/V) was conducted at a trans-phosphatidylation rate of 88% (mol/mol), and no hydrolytic reaction was observed. Compared to commonly used biphasic systems, this system shows a similar transphosphatidylation rate, whereas the undesirable hydrolysis of phospholipids was completely suppressed. 相似文献
15.
Prediction of the Reaction Equilibrium of Biocatalytic Reactions in Aqueous-Organic Two-Phase Systems 总被引:1,自引:0,他引:1
Anja E. M. Janssen Albert Van Der Padt Klaas Van't Riet 《Biocatalysis and Biotransformation》1995,12(4):223-240
Biocatalytic reactions can be carried out in aqueous-organic two-phase systems. Several models to describe the thermodynamically-determined equilibrium position in such systems have appeared in the literature. Some of these models are only valid for dilute systems, whereas others can also be used for nondilute systems. In this paper, these models are described and compared. It is explained in what way the equilibrium constants of each model can be used to predict the product concentration in different organic solvents. 相似文献
16.
《Biocatalysis and Biotransformation》2013,31(4):223-240
Biocatalytic reactions can be carried out in aqueous-organic two-phase systems. Several models to describe the thermodynamically-determined equilibrium position in such systems have appeared in the literature. Some of these models are only valid for dilute systems, whereas others can also be used for nondilute systems. In this paper, these models are described and compared. It is explained in what way the equilibrium constants of each model can be used to predict the product concentration in different organic solvents. 相似文献
17.
耐有机溶剂微生物是一类新颖的极端微生物,直到20世纪80年代才被系统地研究.它们通过各种耐受机制,有效抵御或降低有机溶剂对其细胞产生的毒害作用.因此,在全细胞催化、环境污染治理等领域,耐有机溶剂极端微生物具有广阔的工业应用前景.此外,深入透彻地了解耐有机溶剂极端微生物的各种耐受机制,有助于利用基因工程技术改造和优化现有耐有机溶剂极端微生物的各种性能,进一步拓展其工业应用领域.本文将从囊泡外排、改变细胞膜磷脂结构和组成等4个方面概述近年来耐有机溶剂极端微生物的耐受机制研究新进展,并介绍它们在全细胞催化等领域的应用. 相似文献
18.
Fifty different hydrolases were screened for retention of high esterification activity in an organic solvent with citronellol as substrate. Although 22 hydrolases were very active as catalysts in the organic solvent, lipase from Candida cylindracea (lipase OF 360) was selected for further examination of the effects of reaction conditions on enzyme activity, with regard to catalyst availability and activity retention after immobilization. When the enzyme was entrapped in hydrophobic polyurethane gels, water-saturated isooctane was found to be the most suitable solvent, whereas polar solvents caused reversible catalyst inactivation. Entrapment significantly enhanced the operational stability of the lipase in the organic solvent. 相似文献
19.
Posttranslational Processing of Carboxypeptidase E, a Neuropeptide-Processing Enzyme, in AtT-20 Cells and Bovine Pituitary Secretory Granules 总被引:2,自引:0,他引:2
Abstract: Carboxypeptidase E (CPE) functions in the posttranslational processing of peptide hormones and neurotransmitters. Like other peptide processing enzymes, CPE is present in secretory granules in soluble and membrane-associated forms that arise from posttranslational processing of a single precursor, “proCPE.” To identify the intracellular site of proCPE processing, the biosynthesis and posttranslational processing were investigated in the mouse anterior pituitary-derived cell line, AtT-20. Following a 15-min pulse with [35S]Met, both soluble and membrane-bound forms of CPE were identified, indicating that the posttranslational processing event that generates these forms of CPE occurs in the endoplasmic reticulum or early Golgi apparatus. The relative proportion of soluble and membrane-bound forms of CPE changed when cells were chased for 2 h at 37°C but was unaffected when cells were chased at either 20 or 15°C, suggesting that further processing of membrane forms to the soluble form occurs in a post-Golgi compartment. Treatment of the cells with chloroquine did not alter the relative distribution of soluble and membrane forms, suggesting that an acidic compartment is not required for this processing event. Overexpression of CPE did not influence the distribution of soluble and membrane forms of CPE, indicating that the CPE-processing enzymes are not rate-limiting. To examine directly CPE-processing enzymes, bovine anterior pituitary secretory vesicles were isolated. An enzyme activity that releases the membrane-bound form of CPE was detected in the purified secretory vesicle membranes. This enzyme, which removes the C-terminal region of CPE, is partially inhibited by EDTA and phenylmethylsulfonyl fluoride and is activated by CaCI2. Together, the data indicate that posttranslational processing of CPE occurs in secretory granules and that this activity may be mediated by a prohormone convertase-like enzyme. 相似文献