首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Gland formation from human endometrial epithelial cells in vitro   总被引:5,自引:0,他引:5  
Summary We have developed methods for the culture of human endometrial glandular epithelia in vitro. The culture medium is serum-free and is used in combination with Matrigel, an extracellular matrix material applied as a coating on cell culture plates. Cell growth begins as a monolayer, but the cells subsequently form glandular or organoid structures. The glands are composed of polar columnar cells facing a central lumen, which is enclosed by the apical surfaces of cells displaying numerous microvilli and sealed by tight junction complexes. The ability to study in vitro the complex process of glandular morphogenesis represents an important new tool in cell biology which may be used to investigate growth regulation, hormone production and dependency, and cellular recognition and interactions. Ultimately, these characteristics may be applied to study the alterations of glandular epithelia associated with neoplasia. This work was supported by NIH grants CA31733 and CA09156 and NIEHS contract ES55092  相似文献   

2.
Planar tissue polarity is a fundamental feature of many epithelia. Large-scale cell polarity patterns govern the orientation of external structures such as hairs and cilia. Tissue polarity patterns arise from the collective organization of cells, which are polarized individually. Such cell and tissue polarities are reflected in anisotropic distributions of proteins of the planar cell polarity (PCP) pathway. Here we give an overview on recent progress in understanding how large-scale patterns of tissue polarity are controlled. We highlight the role of active mechanical events in the organization of polarity patterns during the development of the pupal fly wing. Patterns of cell flow are generated by mechanical stresses exerted on the tissue as well as by oriented cell divisions and neighbor exchanges. We discuss how the resulting tissue shear controls polarity orientation. We argue that the often-observed alignment of PCP either parallel or perpendicular to the long axis of developing tissues is a characteristic consequence of shear-induced polarity alignment. This principle allows for the versatile and robust generation of polarity patterns in tissues.  相似文献   

3.
Y Li  H Naveed  S Kachalo  LX Xu  J Liang 《PloS one》2012,7(8):e43108
Regulation of cell growth and cell division has a fundamental role in tissue formation, organ development, and cancer progression. Remarkable similarities in the topological distributions were found in a variety of proliferating epithelia in both animals and plants. At the same time, there are species with significantly varied frequency of hexagonal cells. Moreover, local topology has been shown to be disturbed on the boundary between proliferating and quiescent cells, where cells have fewer sides than natural proliferating epithelia. The mechanisms of regulating these topological changes remain poorly understood. In this study, we use a mechanical model to examine the effects of orientation of division plane, differential proliferation, and mechanical forces on animal epithelial cells. We find that regardless of orientation of division plane, our model can reproduce the commonly observed topological distributions of cells in natural proliferating animal epithelia with the consideration of cell rearrangements. In addition, with different schemes of division plane, we are able to generate different frequency of hexagonal cells, which is consistent with experimental observations. In proliferating cells interfacing quiescent cells, our results show that differential proliferation alone is insufficient to reproduce the local changes in cell topology. Rather, increased tension on the boundary, in conjunction with differential proliferation, can reproduce the observed topological changes. We conclude that both division plane orientation and mechanical forces play important roles in cell topology in animal proliferating epithelia. Moreover, cell memory is also essential for generating specific topological distributions.  相似文献   

4.
5.
Precise measurement of the mechanical properties of a cell provides useful information about its structural organization and physiological state. It is interesting to understand the effect of individual components on the mechanical properties of the entire cell. In this study, we investigate the influence of the cytoskeletal actin on the viscoelastic properties of a cell. Actin-specific agents, including latrunculin A and jasplakinolide, are used to alter the organization of the cytoskeletal actin. Brassica oleracea protoplasts are treated with the drugs and deformed under an external electric potential. The relaxation processes of single protoplasts after electrodeformation are measured. The data are analyzed by a model-independent spectrum recovery algorithm. Two distinct characteristic time constants are obtained from the relaxation spectra. Treatment with latrunculin A increases both of the relaxation time constants. The longest relaxation times for control, latrunculin A treated, and jasplakinolide treated cells are determined to be 0.28, 1.0, and 0.21 s, respectively.  相似文献   

6.
Precise tissue remodeling during development is essential for shaping embryos and optimal organ function. Epiboly is an early gastrulation event by which the blastoderm expands around the yolk to engulf it. Three different layers are involved in this process, an epithelial layer (the enveloping layer, EVL), the embryo proper, constituted by the deep cells (DCs), and the yolk cell. Although teleost epiboly has been studied for many years, a clear understanding of its mechanics was still missing. Here we present new information on the cellular, molecular and mechanical elements involved in epiboly that, together with some other recent data and upon comparison with previous biomechanical models, lets conclude that the expansion of the epithelia is passive and driven by active cortical contraction and membrane removal in the adjacent layer, the External Yolk Syncytial Layer (E-YSL). The isotropic actomyosin contraction of the E-YSL cortex generates an anisotropic stress pattern and a directional net movement consequence of the differences in the deformation response of the 2 opposites adjacent domains (EVL and the Yolk Cytoplasmic Layer - YCL). Contractility is accompanied by the local formation of membrane folds and its removal by Rab5ab dependent macropinocytosis. The increase in area of the epithelia during the expansion is achieved by cell-shape changes (flattening) responding to spherical geometrical cues. The counterbalance between the geometry of the embryo and forces dissipation among different elements is therefore essential for epiboly global coordination.  相似文献   

7.
Summary During kidney development the embryonic ampullar collecting duct (CD) epithelium changes its function. The capability for nephron induction is lost and the epithelium develops into a heterogeneously composed epithelium consisting of principal and intercalated cells. Part of this development can be mimicked under in vitro conditions, when embryonic collecting duct epithelia are isolated from neonatal rabbit kidneys and kept under perfusion culture. The differentiation pattern is quite different when the embryonic collecting duct epithelia are cultured in standard Iscove’s modified Dulbecco’s medium as compared to medium supplemented with additional NaCl. Thus, the differentiation behavior of embryonic CD epithelia is unexpectedly sensitive. To obtain more information about how much influence the medium has on cell differentiation, we tested medium 199, basal medium Eagle, Williams’ medium E, McCoys 5A medium, and Dulbecco’s modified Eagle medium under serum-free conditions. The experiments show that in general, all of the tested media are suitable for culturing embryonic collecting duct epithelia. According to morphological criteria, there is no difference in morphological epithelial cell preservation. The immunohistochemical data reveal two groups of expressed antigens. Constitutively expressed antigens such as cytokeratin 19, PCD 9, Na/K ATPase, and laminin are present in all cells of the epithelia independent of the culture media used. In contrast, a group of antigens detected by mab 703, mab 503, and PNA is found only in individual series. Thus, each culture medium produces epithelia with a very specific cell differentiation pattern.  相似文献   

8.
The mechanical properties of living cells are a label-free biophysical marker of cell viability and health; however, their use has been greatly limited by low measurement throughput. Although examining individual cells at high rates is now commonplace with fluorescence activated cell sorters, development of comparable techniques that nondestructively probe cell mechanics remains challenging. A fundamental hurdle is the signal response time. Where light scattering and fluorescence signatures are virtually instantaneous, the cell stress relaxation, typically occurring on the order of seconds, limits the potential speed of elastic property measurement. To overcome this intrinsic barrier to rapid analysis, we show here that cell viscoelastic properties measured at frequencies far higher than those associated with cell relaxation can be used as a means of identifying significant differences in cell phenotype. In these studies, we explore changes in erythrocyte mechanical properties caused by infection with Plasmodium falciparum and find that the elastic response alone fails to detect malaria at high frequencies. At timescales associated with rapid assays, however, we observe that the inelastic response shows significant changes and can be used as a reliable indicator of infection, establishing the dynamic viscoelasticity as a basis for nondestructive mechanical analogs of current high-throughput cell classification methods.  相似文献   

9.
Airway epithelia are positioned at the interface between the body and the environment, and generate complex signaling responses to inhaled toxins and other stresses. Luminal mechanical stimulation of airway epithelial cells produces a propagating wave of elevated intracellular Ca(2+) that coordinates components of the integrated epithelial stress response. In polarized airway epithelia, this response has been attributed to IP(3) permeation through gap junctions. Using a combination of approaches, including enzymes that destroy extracellular nucleotides, purinergic receptor desensitization, and airway cells deficient in purinoceptors, we demonstrated that Ca(2+) waves induced by luminal mechanical stimulation in polarized airway epithelia were initiated by the release of the 5' nucleotides, ATP and UTP, across both apical and basolateral membranes. The nucleotides released into the extracellular compartment interacted with purinoceptors at both membranes to trigger Ca(2+) mobilization. Physiologically, apical membrane nucleotide-release coordinates airway mucociliary clearance responses (mucin and salt, water secretion, increased ciliary beat frequency), whereas basolateral release constitutes a paracrine mechanism by which mechanical stresses signal adjacent cells not only within the epithelium, but other cell types (nerves, inflammatory cells) in the submucosa. Nucleotide-release ipsilateral and contralateral to the surface stimulated constitutes a unique mechanism by which epithelia coordinate local and distant airway defense responses to mechanical stimuli.  相似文献   

10.
The mechanical properties of living cells are a label-free biophysical marker of cell viability and health; however, their use has been greatly limited by low measurement throughput. Although examining individual cells at high rates is now commonplace with fluorescence activated cell sorters, development of comparable techniques that nondestructively probe cell mechanics remains challenging. A fundamental hurdle is the signal response time. Where light scattering and fluorescence signatures are virtually instantaneous, the cell stress relaxation, typically occurring on the order of seconds, limits the potential speed of elastic property measurement. To overcome this intrinsic barrier to rapid analysis, we show here that cell viscoelastic properties measured at frequencies far higher than those associated with cell relaxation can be used as a means of identifying significant differences in cell phenotype. In these studies, we explore changes in erythrocyte mechanical properties caused by infection with Plasmodium falciparum and find that the elastic response alone fails to detect malaria at high frequencies. At timescales associated with rapid assays, however, we observe that the inelastic response shows significant changes and can be used as a reliable indicator of infection, establishing the dynamic viscoelasticity as a basis for nondestructive mechanical analogs of current high-throughput cell classification methods.  相似文献   

11.
The midgut of Cryptocellus boneti was studied by light and electron microscopy. The epithelia of the diverticula and of the anterior part of the midgut tube are composed of two cell types: digestive and secretory. In contrast, the epithelia of posterior part of the midgut tube and of the stercoral pocket consist of one type of cells only. In some places, parts of the midgut system are connected by an intermediate tissue. Digestive cells are characterized by an apical system of tubules, nutritional vacuoles, and spherites; characteristic features of secretory cells are secretory granules and a prominent rough endoplasmic reticulum. Cells of the midgut tube appear not to be involved in the absorption of food. © 1994 Wiley-Liss, Inc.  相似文献   

12.
Dynamic mechanical behaviour of living cells has been described by viscoelasticity. However, quantitation of the viscoelastic parameters for living cells is far from sophisticated. In this paper, combining inverse finite element (FE) simulation with Atomic Force Microscope characterization, we attempt to develop a new method to evaluate and acquire trustworthy viscoelastic index of living cells. First, influence of the experiment parameters on stress relaxation process is assessed using FE simulation. As suggested by the simulations, cell height has negligible impact on shape of the force–time curve, i.e. the characteristic relaxation time; and the effect originates from substrate can be totally eliminated when stiff substrate (Young’s modulus larger than 3 GPa) is used. Then, so as to develop an effective optimization strategy for the inverse FE simulation, the parameters sensitivity evaluation is performed for Young’s modulus, Poisson’s ratio, and characteristic relaxation time. With the experiment data obtained through typical stress relaxation measurement, viscoelastic parameters are extracted through the inverse FE simulation by comparing the simulation results and experimental measurements. Finally, reliability of the acquired mechanical parameters is verified with different load experiments performed on the same cell.  相似文献   

13.
14.
The stem cells (SCs) at the bottom of intestinal crypts tightly contact niche-supporting cells and fuel the extraordinary tissue renewal of intestinal epithelia. Their fate is regulated stochastically by populational asymmetry, yet whether asymmetrical fate as a mode of SC division is relevant and whether the SC niche contains committed progenitors of the specialized cell types are under debate. We demonstrate spindle alignments and planar cell polarities, which form a novel functional unit that, in SCs, can yield daughter cell anisotropic movement away from niche-supporting cells. We propose that this contributes to SC homeostasis. Importantly, we demonstrate that some SC divisions are asymmetric with respect to cell fate and provide data suggesting that, in some SCs, mNumb displays asymmetric segregation. Some of these processes were altered in apparently normal crypts and microadenomas of mice carrying germline Apc mutations, shedding new light on the first stages of progression toward colorectal cancer.  相似文献   

15.
We present a mechanical model for the morphogenetic folding of embryonic epithelia based on hypothesized mechanical properties of the cellular cytoskeleton. In our model we consider a simple cuboidal epithelium whose cells are joined at their apices by circumferential junctions; to these junctions are attached circumferential arrays of microfilament bundles assembled into a “purse string” around the cell apex. We assume that this purse string has the following property: if its circumference is increased beyond a certain threshold, an active contraction is initiated which “draws the purse-string” and reduces the apical circumference of the cell to a new, shorter, resting length. The remainder of the cell is modeled as a visoelastic body of constant volume. Clearly contraction in one cell could stretch the apical circumferences of neighboring cells and, if the threshold is exceeded, cause them “to fire” and contract. The objective of this paper is to demonstrate that our model, based on the local behavior of individual cells, generates a propagating contraction wave which is sufficient to explain the globally coherent morphogenetic infolding of a wide variety of embryonic epithelia. Representative computer simulations, based on the model, are presented for the initial gastrulation movements of echinoderms, neural tube formation in urodele amphibians, and ventral furrow formation in Drosophila.  相似文献   

16.
Although cell reshaping is fundamental to the mechanics of epithelia, technical barriers have prevented the methods of mechanics from being used to investigate it. These barriers have recently been overcome by the cell-based finite element formulation of Chen and Brodland. Here, parameters to describe the fabric of an epithelium in terms of cell shape and orientation and cell edge density are defined. Then, rectangular "patches" of model epithelia having various initial fabric parameters are generated and are either allowed to anneal or are subjected to one of several patterns of in-plane deformation. The simulations show that cell reshaping lags the deformation history, that it is allayed by cell rearrangement and that it causes the epithelium as a whole to exhibit viscoelastic mechanical properties. Equations to describe changes in cell shape due to annealing and in-plane deformation are presented.  相似文献   

17.
Abstract. Species of Helicoradomenia are constantly found at hydrothermal vent sites of the eastern and western Pacific Ocean. The digestive tract of 2 species of the genus was investigated with special focus on the ultrastructure and histochemistry of epithelia and glandular organs. The preoral cavity and foregut epithelia are composed of microvillous main cells, secretory cells producing protein-rich substances, and sensory cells with specialized cilia. The foregut bears a pair of glands with 3 types of extremely long-necked glandular cells surrounded by musculature. Each glandular cell opens directly into the radula pocket without a gland duct. The large radula apparatus consists of pairs of denticulated bars resting on a flexible radular membrane without elaboration of a subradular membrane. The midgut has a narrow, mid-dorsal tract of ciliary cells, but most of the epithelium is composed of digestive cells with a highly developed lysosomal system. The hindgut is lined by ciliated cells and free of glands. The foregut and radula seem to be highly efficient in the capture of relatively large, motile prey. Food contents within the midgut lumen and within some of the large secondary lysosomes indicate a triploblastic metazoan prey of non-cnidarian origin. The digestive tract is not adapted to microvory and there is no indication of a symbiosis with chemoautotrophic bacteria.  相似文献   

18.

Probing mechanical properties of cells has been identified as a means to infer information on their current state, e.g. with respect to diseases or differentiation. Oocytes have gained particular interest, since mechanical parameters are considered potential indicators of the success of in vitro fertilisation procedures. Established tests provide the structural response of the oocyte resulting from the material properties of the cell’s components and their disposition. Based on dedicated experiments and numerical simulations, we here provide novel insights on the origin of this response. In particular, polarised light microscopy is used to characterise the anisotropy of the zona pellucida, the outermost layer of the oocyte composed of glycoproteins. This information is combined with data on volumetric changes and the force measured in relaxation/cyclic, compression/indentation experiments to calibrate a multi-phasic hyper-viscoelastic model through inverse finite element analysis. These simulations capture the oocyte’s overall force response, the distinct volume changes observed in the zona pellucida, and the structural alterations interpreted as a realignment of the glycoproteins with applied load. The analysis reveals the presence of two distinct timescales, roughly separated by three orders of magnitude, and associated with a rapid outflow of fluid across the external boundaries and a long-term, progressive relaxation of the glycoproteins, respectively. The new results allow breaking the overall response down into the contributions from fluid transport and the mechanical properties of the zona pellucida and ooplasm. In addition to the gain in fundamental knowledge, the outcome of this study may therefore serve an improved interpretation of the data obtained with current methods for mechanical oocyte characterisation.

  相似文献   

19.
Many musculoskeletal tissues exhibit significant anisotropic mechanical properties reflective of a highly oriented underlying extracellular matrix. For tissue engineering, recreating this organization of the native tissue remains a challenge. To address this issue, this study explored the fabrication of biodegradable nanofibrous scaffolds composed of aligned fibers via electrospinning onto a rotating target, and characterized their mechanical anisotropy as a function of the production parameters. The characterization showed that nanofiber organization was dependent on the rotation speed of the target; randomly oriented fibers (33% fiber alignment) were produced on a stationary shaft, whereas highly oriented fibers (94% fiber alignment) were produced when rotation speed was increased to 9.3m/s. Non-aligned scaffolds had an isotropic tensile modulus of 2.1+/-0.4MPa, compared to highly anisotropic scaffolds whose modulus was 11.6+/-3.1MPa in the presumed fiber direction, suggesting that fiber alignment has a profound effect on the mechanical properties of scaffolds. Mechanical anisotropy was most pronounced at higher rotation speeds, with a greater than 33-fold enhancement of the Young's modulus in the fiber direction compared to perpendicular to the fiber direction when the rotation speed reached 8m/s. In cell culture, both the organization of actin filaments of human mesenchymal stem cells and the cellular alignment of meniscal fibroblasts were dictated by the prevailing nanofiber orientation. This study demonstrates that controllable and anisotropic mechanical properties of nanofibrous scaffolds can be achieved by dictating nanofiber organization through intelligent scaffold design.  相似文献   

20.
Biomechanics is gaining relevance as complementary discipline to structural and cellular biology. The response of cells to mechanical stimuli determines cell type and function, while the spatial distribution of mechanical forces within the cells is crucial to understand cell activity. The experimental methodologies to approach cell mechanics are diverse but either they are effective in few cases or they rule out the innate cell complexity. In this regard, we have developed a simple scanning probe-based methodology that overcomes the limitations of the available methods. Stress relaxation, the decay of the force exerted by the cell surface at constant deformation, has been used to extract relaxational responses at each cellular sublocalisation and generate maps. Surprisingly, decay curves exerted by test cells are fully described by a generalized viscoelastic model that accounts for more than one simultaneously occurring relaxations. Within the range of applied forces (0.5–4 nN) a slow and a fast relaxation with characteristic times of 0.1 and 1 s have been detected and assigned to rearrangements of cell membrane and cytoskeleton, respectively. Relaxation time mapping of entire cells is thus promising to simultaneously detect non-uniformities in membrane and cytoskeleton and as identifying tool for cell type and disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号