首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
Mad protein has been shown as an antagonist of cMyc protein in some cell lines.The effect of Mad protein to the malignant phenotype of human hepatoma BEL-7404 cell line was investigated experimentally.An eukarryotic vector pCDNA Ⅲ containing full ORF fragment of mad cDNA was transfected into targeted cells.Under G418 selection,stable Mad-overexpressed cells were cloned.Studies on the effect of Mad over-expression in cell proliferation and cell cycle revealed that cell morphology of the Mad-overexpressed BEL-7404-M1 cells was significantly different from the parent and control vector transfected cells.DNA synthesis,cell proliferation and anchorage-independent growth in soft-agar of the madtransfected cells were partially inhibited in comparison to control cells.Flos cytometry analysis indicated that mad over-expression might block more transfectant cells at G0/G1 phase,resulting in the retardation of cell proliferation.RT-PCR detected a marked inhibition of the expression of cdc25A,an important regulator gene of G0/G1 to S phase in cell cycle.It was also found that Mad protein overexpression could greatly suppress p53-mediated apoptosis in BEL-74040M1 cells in the absence of serume.Thus,Mad proteins may function as a negative regulator antagonizing c-Myc activity in the control of cell growth and apoptosis in human hepatocellular carcinoma BEL-7404 cells.  相似文献   

6.
7.
8.
9.
10.
11.
Mad-Max heterodimers have been shown to antagonize Myc transforming activity by a mechanism requiring multiple protein-protein and protein-DNA interactions. However, the mechanism by which Mad functions in differentiation is unknown. Here, we present evidence that Mad functions by an active repression mechanism to antagonize the growth-promoting function(s) of Myc and bring about a transition from cellular proliferation to differentiation. We demonstrate that exogenously expressed c-Myc blocks inducer-mediated differentiation of murine erythroleukemia cells without disrupting the induction of endogenous Mad; rather, high levels of c-Myc prevent a heterocomplex switch from growth-promoting Myc-Max to growth-inhibitory Mad-Max. Cotransfection of a constitutive c-myc with a zinc-inducible mad1 results in clones expressing both genes, whereby a switch from proliferation to differentiation can be modulated. Whereas cells grown in N'N'-hexamethylene bisacetamide in the absence of zinc fail to differentiate, addition of zinc up-regulates Mad expression by severalfold and differentiation proceeds normally. Coimmunoprecipitation analysis reveals that Mad-Max complexes are in excess of Myc-Max in these cotransfectants. Moreover, we show that the Sin-binding, basic region, and leucine zipper motifs are required for Mad to function during a molecular switch from proliferation to differentiation.  相似文献   

12.
13.
Lüscher B 《Gene》2001,277(1-2):1-14
  相似文献   

14.
15.
16.
Function of the c-Myc oncogenic transcription factor   总被引:29,自引:0,他引:29  
  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号