首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membranes of sarcoplasmic reticulum were labelled with 1-fluoro-2,4-dinitro[3H]benzene at pH 6.5 and with 2,4,6-trinitrobenzenesulphonate at pH 9.2. Conditions were chosen to restrict reaction to amino groups, and the effect of blockings of these groups by methyl acetimidate was determined. All proteins were labelled to some extent by both reagents, but, whereas the trinitrophenylation of both lipid and protein amino groups was almost completely blocked by methyl acetimidate, the dinitrophenylation of the ATPase at pH 6.5 was much less affected. The seven amino groups on the ATPase that were labelled under these conditions did not react with methyl acetimidate. This reagent can therefore be used to enhance the specificity of fluorodinitrobenzene for amino groups in a hydrophobic environment. The amino groups on the minor proteins and on the phospholipids that reacted with fluorodinitrobenzene at pH 6.5 were probably in an aqueous environment, since the reaction was blocked by methyl acetimidate.  相似文献   

2.
The new protein reagent 1-fluoro-2-nitro-4-trimethylammoniobenzene iodide reacts with model amino acids to give derivatives that are very stable to hydrolysis. In a dimethyl sulphoxide-water medium it reacts rapidly (3h) with bovine insulin, and substitution occurs quantitatively at the N-terminal amino groups and at the in-amino groups of lysine residues. Two of the four tyrosine residues react, and it is assumed that these are the exposed groups leaving the buried groups unattacked. Unlike 1-fluoro-2,4-dinitrobenzene and related reagents, it imparts hydrophilic properties to the protein derivative, thus facilitating structural and other studies on the derivative. Circular-dichroism spectra of the modified insulin suggest that no conformational changes have occurred during reaction. These spectra also reveal the presence of an extrinsic Cotton effect at 410nm.  相似文献   

3.
A heterobifunctional reagent, N-succinimidyl 3-(2-pyridyldithio)propionate, was synthesized. Its N-hydroxysuccinimide ester group reacts with amino groups and the 2-pyridyl disulphide structure reacts with aliphatic thiols. A new thiolation procedure for proteins is based on this reagent. The procedure involves two steps. First, 2-pyridyl disulphide structures are introduced into the protein by the reaction of some of its amino groups with the N-hydroxysuccinimide ester sie of the reagent. The protein-bound 2-pyridyl disulphide structures are then reduced with dithiothreitol. This reaction can be carried out without concomitant reduction of native disulphide bonds. The technique has been used for the introduction of thiol groups de novo into ribonuclease, gamma-globulin, alpha-amylase and horseradish peroxidase. N-Succinimidyl 3-(2-pyridyldithio)propionate can also be used for the preparation of protein-protein conjugates. This application is based on the fact that protein-2-pyridyl disulphide derivatives (formed from the reaction of non-thiol proteins with the reagent) react with thiol-containing proteins (with native thiols or thiolated by, for example, the method described above) via thiol-disulphide exchange to form disulphide-linked protein-protein conjugates. This conjugation technique has been used for the preparation of an alpha-amylase-urease, a ribonuclease-albumin and a peroxidase-rabbit anti-(human transferrin) antibody conjugate. The disulphide bridges between the protein molecules can easily be split by reduction or by thiol-disulphide exchange. Thus conjugation is reversible. This has been demonstrated by scission of the ribonuclease-albumin and the alpha-amylase-urease conjugate into their components with dithiothreitol. N-Succinimidyl 3-(2-pyridyldithio)propionate has been prepared in crystalline form, in which state (if protected against humidity) it is stable on storage at room temperature (23 degrees C).  相似文献   

4.
The sulfation of dermatan sulfate by SO3-trimethylamine in N,N-dimethylformamide led to substitution initially at HO-6 of residues of 2-acetamido-2-deoxy-beta-D-galactopyranosyl 4-sulfate (1), to produce the 4,6-disulfate (6). When this step reached a level of greater than 50%, sulfation occurred with equal facility at HO-2 and HO-3 of residues of alpha-L-idopyranosyluronic acid (2), giving rise to a mixture of 2-,3-, and 2,3-disulfates. An analogous substitution pattern was observed for HO-2 and -3 of a simpler idopyranose unit, in the sulfation of methyl 4,6-O-benzylidene-alpha-D-idopyranoside (12). This lack of regioselectivity in the reaction of 2 (and 12) contrasts markedly with the high affinity of the reagent for HO-3 of residues of alpha-L-idopyranosyluronic acid present in a modified form of heparin. It is attributed to a difference between the two polymers in the relative orientation of their neighboring amino sugar residues, whereby there is an unobstructed access of the reagent in one instance, and hindrance of HO-2 selectively in the other. Enzymolysis by chondroitinase ABC was found to yield unsaturated disaccharide containing residues of 4,6-disulfate, as well as larger fragments containing unsaturated glycosyl groups derived from L-idopyranosyluronic acid 2-sulfate, evidence of a relatively broad enzyme specificity. The presence of extra sulfate groups in dermatan sulfate did not enhance its weak antithrombotic activity, as measured by anti Xa assay, in disagreement with earlier reports.  相似文献   

5.
1. Treatment with methyl acetimidate was used to probe the topography of several tetrameric glyceraldehyde 3-phosphate dehydrogenases, in particular the holoenzymes from rabbit muscle and Bacillus stearothermophilus. During the course of the reaction with the rabbit muscle enzyme, the number of amino groups fell rapidly from the starting value of 27 per subunit to a value of approx. five per subunit. This number could be lowered further to values between one and two per subunit by a second treatment with methyl acetimidate. The enzyme remained tetrameric throughout and retained 50% of its initial catalytic activity at the end of the experiment. 2. Use of methyl [1-14C]acetimidate and small-scale methods of protein chemistry showed that only one amino group per subunit, that of lysine-306, was completely unavailable for reaction with imido ester in the native enzyme. This results is consistent with the structure of the highly homologous glyceraldehyde 3-phosphate dehydrogenase of lobster muscle deduced from X-ray-crystallographic analysis, since lysine-306 can be seen to form an intrachain ion-pair with aspartic acid-241 in the hydrophobic environment of a subunit-subunit interface. 3. Several other amino groups in the rabbit muscle enzyme that reacted only slowly with the reagent were also identified chemically. These were found to be located entirely in the C-terminal half of the polypeptides chain, which comprises a folding domain associated with catalytic activity and subunit contact in the three-dimensional structure. Slow reaction of these 'surface' amino groups with methyl acetimidate is attributed to intramolecular ionic interactions of the amino groups with neighbouring side-chain carboxyl groups, a conclusion that is compatible with the reported three-dimensional structure and with the dependence of the reaction of ionic stength. 4. Very similar results were obtained with the enzymes from B. stearothermophilus and from ox muscle and ox liver, supporting the view that the ion-pair involving lysine-306 and aspartic acid-241 will be a common structural feature in glyceraldehyde-3-phosphate dehydrogenases. The B. stearothermophilus enzyme was fully active after modification. 5. No differences could be detected between the enzymes from ox muscle and ox liver, in accord with other evidence that points to the identify of these enzymes. 6. The pattern of slowly reacting amino groups in the enzyme from B. stearothermophilus, although similar to that of the mammalian enzymes, indicated one or two additional intramolecular ionic interactions of lysine residues that might contribute to the thermal stability of this enzyme.  相似文献   

6.
The spin-labeling reagent, N4-(9'-fluorenylmethyloxycarbonyl)-4-amino-1-oxyl-4-succinimidyloxyca rbonyl- 2,2,6,6-tetramethylpiperidine, and the same enriched in 14C at the 4-formyl group, were synthesized as new acylating compounds for protein amino groups that can preserve charge. Porcine testicular calmodulin was modified with this reagent at pH 7.8 in the presence of Ca2+ under conditions that yielded a fairly homogeneous derivative as judged by electrophoretic analysis and tryptic digestion patterns. The tryptic peptides were separated by gel filtration and reverse-phase high-performance liquid chromatography, and the resulting, highly purified 14C-labeled peptides were hydrolyzed and their amino acid compositions determined. The results indicate that at least 87% of the modifications occur at lysyl residues 75 and 148, and the former appears to be the most reactive. This bilabeled calmodulin adduct does not activate a bovine brain cyclic nucleotide phosphodiesterase preparation. The fluorenylmethyloxycarbonyl portion of this inactive calmodulin derivative can, however, be removed by conditions that do not diminish native calmodulin activity in the phosphodiesterase assay. The resulting calmodulin adduct is active in the enzymic assay, although with diminished potency compared to calmodulin. The specificity of the reaction of this acylating reagent with calmodulin may be due to recognition of the tricyclic fluorene ring by the phenothiazine-binding sites since it was found that trifluoperazine inhibited the labeling reaction. Also, calmodulin was far more reactive to this reagent than were several other proteins. This is the first report of a specific, characterized lysine modification on calmodulin, and it is possible that other phenothiazine-binding proteins may also exhibit similar selectivity for acylation. Electron paramagnetic resonance spectra of the calmodulin adducts suggest a high degree of spin immobilization in both the Ca2+-free and Ca2+-saturated states.  相似文献   

7.
A colorimetric procedure for quantitative determination of free and substituted glucosamine amino groups in heparin and related polysaccharides has been developed. The total content of hexosamine amino groups is determined by a modification of the method of Tsuji et al. (1969, Chem. Pharm. Bull. 17, 1505-1510); this method involves acid hydrolysis under conditions effecting complete removal of N-acetyl and N-sulfate groups, deaminative cleavage with nitrous acid, and colorimetric analysis of the resultant anhydromannose residues by reaction with 3-methyl-2-benzothiazolinone hydrazone (MBTH). N-sulfated glucosamine residues are cleaved selectively by treatment with nitrous acid at pH approximately 1.5 (J. E. Shively, and H.E. Conrad, 1976, Biochemistry 15, 3932-3942) and quantitated by the MBTH reaction. Under carefully controlled conditions, deamination at pH approximately 1.5 is highly specific for N-sulfated glucosamine residues, but an excess of reagent causes some cleavage of residues with unsubstituted amino groups as well. Deaminative cleavage at pH approximately 4.5 results in preferential degradation of unsubstituted glucosamine residues, but some cleavage (5-8%) of N-sulfated residues also occurs. However, analysis of the content of N-sulfated residues by the specific pH 1.5 procedure allows appropriate corrections to be made. From the value for total hexosamine content and the sum of N-sulfated and unsubstituted residues, the content of N-acetylated residues is calculated by difference. The modified deamination procedures, in combination with product analysis by the MBTH reaction, have been applied to several problems commonly encountered in the analysis and characterization of heparin.  相似文献   

8.
Phenylisothiocyanate, enriched with 13C at the isothiocyanate carbon, has been synthesized and utilized as a 13C NMR probe of proteins for the first time. The reagent has been used to label the amino groups of oxidized glutathione, and the resulting 13C NMR spectrum shows a prominent thiocarbonyl peak after a single NMR scan. The reagent is also capable of differentiating amino groups on the insulin molecule with distinct peaks corresponding to the amino groups on the A and B chains of insulin. This study illustrates the potential of using a new 13C label to functionalize amino groups of proteins and to study the labeled proteins with 13C NMR.  相似文献   

9.
The synthesis of the imidoester methyl 3-mercaptopropionimidate is described; this reacts selectively with the amino groups of proteins. It is intended that the additional thiol groups thereby introduced should serve as points of attachment for heavy atoms and allow the preparation of isomorphous derivatives (at chemically identifiable sites) for X-ray diffraction analysis. Specific reaction of the imidoester with one of the two lysine residues of the protein subunit of intact tobacco mosaic virus is described.  相似文献   

10.
1. Cathepsin L of the white muscle of chum salmon (Oncorhynchus keta) in spawning migration was purified to homogeneity by a series of chromatography on DEAE-Sephadex (1st), SP-Sephadex, CM-Sephadex, DEAE-Sephadex (2nd) and Sephadex G-100. 2. The molecular weight of salmon muscle cathepsin L was estimated to be 30,000 and its isoelectric point was 5.2. 3. Cathepsin L had a pH optimum of 5.6, required a thiol-reducing reagent for activation, and was inhibited by cysteine protease inhibitors. 4. The Km and kcat values for Z-Phe-Arg-MCA were determined to be 1.68 microM and 15.8 s-1, respectively. This enzyme hydrolyzed proteins such as insulin B chain, hemoglobin, serum albumin and azocasein easily. 5. The bond specificity to oxidized insulin B chain inferred that the enzyme had a preference for hydrophobic amino acid in P2 and P3 residues.  相似文献   

11.
A method has been developed for the simultaneous detection of cysteine and cystine in proteins by amino acid analysis. In this method, the sulfhydryl groups of the cysteine residues are first blocked with 2-aminoethyl methanethiosulfonate (AEMTS). This reagent converts all free sulfhydryl groups to mixed disulfides with 2-aminoethanethiol (AET). The isolated blocked protein is subjected to oxidation with performic acid prior to hydrolysis and amino acid analysis. This procedure quantitatively converts the 2-aminoethanethiol blocking groups into taurine, and all cysteine residues (including those involved in disulfide bonds) into cysteic acid. Both of these derivatives are stable and can be recovered quantitatively by amino acid analysis. The speed and specificity with which AEMTS reacts with thiols make this method particularly effective for the characterization of disulfide-coupled folding intermediates.  相似文献   

12.
The chemical modification of amino acid side-chains followed by mass spectrometric detection can reveal at least partial information about the 3-D structure of proteins. In this work we tested diethylpyrocarbonate, as a common histidyl modification agent, for this purpose. Appropriate conditions for the reaction and detection of modified amino acids were developed using angiotensin II as a model peptide. We studied the modification of several model proteins with a known spatial arrangement (insulin, cytochrome c, lysozyme and human serum albumin). Our results revealed that the surface accessibility of residues is a necessary, although in itself insufficient, condition for their reactivity; the microenvironment of side-chains and the dynamics of protein structure also affect the ability of residues to react. However the detection of modified residues can be taken as proof of their surface accessibility, and of direct contact with solvent molecules.  相似文献   

13.
1. The rate of reaction of mustard gas (H) with thirteen proteins has been determined. The extreme variation in reaction rates is about 100:1. 2. No qualitative difference in the results was observed when the treatment with H was carried out by the Dixon or stirring methods. 3. The kinetics have been analyzed and a bimolecular equation derived which fits the facts. 4. The carboxyl groups of all proteins reacted when the reaction with H was carried out at pH 6.0 in M/25 acetate buffer. In most cases the number of carboxyl groups covered was approximately equal to the number of H residues bound. 5. The amino groups of proteins failed to react with the possible exception of yeast hexokinase. 6. The color obtained when proteins were mixed with Folin''s phenol reagent at pH 8.0 decreased as the protein was treated with H. The color returned on treatment of the H-protein with alkali and many of the combined H groups were hydrolyzed. Similar results were observed when a concentrated glycyltyrosine solution was treated with H.  相似文献   

14.
The measurement of amino groups in proteins and peptides   总被引:10,自引:3,他引:7  
A technique is examined for determining amino groups with 2,4,6-trinitrobenzenesulphonic acid, in which the extinction at 420nm of sulphite complexes of the trinitrophenylated amino groups is measured. The sensitivity of the method is 5-200nmol of amino group. The method is especially suitable for checking the extent of blocking or unblocking of amino groups in proteins and peptides, owing to the short time required for reaction (5min at room temperature). The reaction of the reagent with thiol groups has been studied and was found to proceed 30-50 times faster than with in-amino groups of model compounds. The in(420) of a trinitrophenylated thiol group was found to be 2250m(-1).cm(-1). The reaction with several amino acids, peptides and proteins is presented. The in(420) of a typical alpha-amino group was found to be 22000m(-1).cm(-1) and that of an in-amino group, 19200m(-1).cm(-1). Difficulties inherent in the analysis of constituent amino group reactions in proteins are discussed.  相似文献   

15.
The reaction between the cyclic dianhydride of diethylenetriaminepentaacetic acid (DTPA), a bifunctional reagent, and proteins under various conditions was studied using porcine insulin as a model protein. The reaction was compared with that between citraconic anhydride, a monofunctional reagent, and insulin. Products were characterized chromatographically and electrophoretically before and after deesterification by hydroxylamine. A DTPA-conjugated product was further characterized by proteolytic fragmentation. The reaction with citraconic anhydride yielded the expected number of products exclusively acylated on amino groups. In contrast, the reaction with the cyclic dianhydride of DTPA under all conditions examined yielded a much higher number of products than expected. Among the products formed were O-acylated ones and products of intermolecular cross-linking. It is concluded that the use of the cyclic dianhydride of DTPA does not allow the reliable preparation of proteins or other macromolecules conjugated with a high number of DTPA molecules in which each molecule of DTPA is linked to one amino group of the macromolecule through a single amide bond.  相似文献   

16.
1. Modification of potato (Solanum tuberosum) lectin with acetic anhydride blocked 5.1 amino and 2.7 tyrosyl groups per molecule of lectin and decreased the haemagglutinating activity of the lectin. De-O-acetylation regenerated 2.0 of the tyrosyl groups and resulted in a recovery of activity. 2. Modification with citraconic anhydride or cyclohexane-1,2-dione did not greatly affect activity, although modification of amino and arginyl groups could be demonstrated. 3. Treatment with tetranitromethane nitrated 3.7 tyrosine residues per molecule of lectin with concomitant loss of activity. The presence of 0.1m-NN′N″-triacetylchitotriose (a potent inhibitor of the lectin) in the reaction medium protected all the tyrosyl residues from nitration and the lectin was fully active. 4. Modification of tryptophyl groups with 2-hydroxy-5-nitrobenzyl bromide and 2,3-dioxoindoline-5-sulphonic acid modified 0.9 and 2.6 residues per molecule of lectin respectively with a loss of activity in each case. Reaction of potato lectin with 2,3-dioxoindoline-5-sulphonic acid in the presence of inhibitor protected 2.4 residues of tryptophan from the reagent. Loss of haemagglutination activity was prevented under these conditions. 5. Reaction of carboxy groups, activated with carbodi-imide, with α-aminobutyric acid methyl ester led to the incorporation of 5.3 residues of the ester per molecule of lectin. Presence of inhibitor in this case, although protecting activity, did not prevent modification of carboxy groups; in fact an increase in the number of modified residues was seen. This effect could be imitated by performing the reaction in 8m-urea. In both cases the number of carboxy groups modified was close to the total number of free carboxy groups as determined by the method of Hoare & Koshland [(1967) J. Biol. Chem. 242, 2447–2453]. Guanidination of lysine residues after carboxy-group modification gave less homoarginine than did the unmodified lectin under the same conditions, suggesting the formation of intramolecular cross-links during carbodi-imide activation. 6. It is suggested from the results presented that amino, arginyl, methionyl, histidyl and carboxyl groups are not involved in the activity of the lectin and that tyrosyl and tryptophyl groups are very closely involved. These findings are similar to those reported for other proteins that bind N-acetylglucosamine oligomers and also fit the general trend in other lectins.  相似文献   

17.
Peptidylarginine deiminase (PAD) enzymes catalyze the conversion of arginine residues in proteins to citrulline residues. Citrulline is a non-standard amino acid that is not incorporated in proteins during translation, but can be generated post-translationally by the PAD enzymes. Although the existence of citrulline residues in proteins has been known for a long time, only a few proteins have been reported to contain this amino acid under normal conditions. These include the nuclear histones, which also contain a wide variety of other post-translational modifications, as for instance methylation of arginine residues. It has been suggested that citrullination and methylation of arginine residues are competing processes and that PAD enzymes might "reverse" the methylation of arginine residues by converting monomethylated arginine into citrulline. However, conflicting data have been reported on the capacity of PADs to citrullinate monomethylated peptidylarginine. Using synthetic peptides that contain either arginine or methylated arginine residues, we show that the human PAD2, PAD3 and PAD4 enzymes and PAD enzyme present in several mouse tissues in vitro can only convert non-methylated peptidylarginine into peptidylcitrulline and that hPAD6 does not show any deiminating activity at all. A comparison of bovine histones either treated or untreated with PAD by amino acid analysis also supported the interference of deimination by arginine methylation. Taken together, these data indicate that it is unlikely that methyl groups at the guanidino position of peptidylarginine can be removed by peptidylarginine deiminases, which has important implications for the recently reported role of these enzymes in gene regulation.  相似文献   

18.
T P King  Y Li  L Kochoumian 《Biochemistry》1978,17(8):1499-1506
Conjugates of two unlike proteins can be prepared via the intermolecular disulfide interchange reaction, namely, protein A containing thiol groups reacts with protein B containing 4-dithiopyridyl groups to yield a conjugate with the release of 4-thiopyridone. Thiol groups can be introduced into proteins upon amidination with methyl 3-mercaptopropionimidate ester or 2-iminothiolane, and 4-dithiopyridyl groups can be introduced into proteins with these same reagents in the presence of 4,4'-dithiodipyridine. 2-Iminothiolane is stable on storage in contrast to the known lability of imidate esters; therefore 2-iminothiolane is a more convenient reagent for the modification of protein than are the imidate esters. All the reactions can be carried out easily under mild conditions in good yields. Conjugates of bovine plasma albumin with itself, ribonuclease, or a copolymer of D-glutamic acid and D-lysine and of sheep antibody and horseradish peroxidase were prepared with modified proteins containing an average of 1 to 5 thiol or dithiopyridyl groups per mol. These conjugates formed mainly dimers, trimers, and tetramers. The peroxidase labeled antibody retained more than 80% of its enzymatic and antigenic binding activities.  相似文献   

19.
The acetylation of insulin   总被引:10,自引:2,他引:8       下载免费PDF全文
The acetylation of the free amino groups of insulin was studied by reaction of the hormone with N-hydroxysuccinimide acetate at pH6.9 and 8.5. The products formed were separated by chromatography on DEAE-Sephadex and were characterized by isoelectric focusing, by end-group analysis, by the incorporation of [(3)H]acetyl groups in the molecule, and by treatment with trypsin that had been treated with 1-chloro-4-phenyl-3-toluene-p-sulphonamidobutan-2-one (;tosylphenylalanyl chloromethyl ketone'). Three monosubstituted products, two disubstituted products and one trisubstituted derivative were prepared. The alpha-amino groups of the terminal residues and the in-amino group of the lysine-B29 were the sites of reaction. Acetylation of any of the free amino groups did not affect the biological activity of insulin. It was demonstrated, however, that substitution at the glycine-A1 amino group by the larger residues, acetoacetyl or thiazolidinecarbonyl, produced a decrease in biological activity. Modification of the lysine-B29 or phenylalanine-B1 amino groups with these larger reagents did not affect the biological activity. Modification of the phenylalanine-B1 amino group by any of the three substituents resulted in a large decrease in the affinity of insulin for anti-insulin antibodies raised in the guinea pig. Modification of the other two amino groups did not affect the reaction with antibody. These observations are correlated with the tertiary structure of insulin.  相似文献   

20.
A new method has been developed for the chemical modification and labeling of carboxyl groups in proteins. Carboxyl groups are activated with Woodward's reagent K (N-ethyl-5-phenylisoxazolium 3'-sulfonate), and the adducts are reduced with [3H]BH4. The method has been applied to the anion transport protein of the human red blood cell (band 3). Woodward's reagent K is a reasonably potent inhibitor of band 3-mediated anion transport; a 5-min exposure of intact cells to 2 mM reagent at pH 6.5 produces 80% inhibition of transport. The inhibition is a consequence of modification of residues that can be protected by 4,4'-dinitrostilbene-2,2'-disulfonate. Treatment of intact cells with Woodward's reagent K followed by B3H4 causes extensive labeling of band 3, with minimal labeling of intracellular proteins such as spectrin. Proteolytic digestion of the labeled protein reveals that both the 60- and the 35-kDa chymotryptic fragments are labeled and that the labeling of each is inhibitable by stilbenedisulfonate. If the reduction is performed at neutral pH the major labeled product is the primary alcohol corresponding to the original carboxylic acid. Liquid chromatography of acid hydrolysates of labeled affinity-purified band 3 shows that glutamate but not aspartate residues have been converted into the hydroxyl derivative. This is the first demonstration of the conversion of a glutamate carboxyl group to an alcohol in a protein. The labeling experiments reveal that there are two glutamate residues that are sufficiently close to the stilbenedisulfonate site for their labeling to be blocked by 4,4'-diisothiocyanodihydrostilbene-2,2'-disulfonate and 4,4'-dinitrostilbene-2,2'-disulfonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号