共查询到20条相似文献,搜索用时 0 毫秒
1.
A method of constructing shuffled autocorrelation functions (SACF) was used to characterize single units in the dorsal medullar nucleus of the common frog (Rana temporaria). A continuous characteristic frequency tone modulated by repeating pieces of low-frequency noise was used as a stimulus. SACF was calculated as the correlation between the firing discharges evoked by different repeating pieces of the low-frequency noise. This approach obviates the influence of refractoriness and also considerably increases the sample representativity. Comparison of the SACF with the conventional ACF permits estimating the temporal dynamics of changes in the postspike excitability of the neuron. Analysis of several examples demonstrates the possibility of facilitation just after the period of absolute refractoriness in some tonic units. Neurons exhibiting only a phasic response to the onset of nonmodulated voice-frequency pieces were able to selectively respond to special moments of noise amplitude modulation. These cells demonstrate extremely high synchronism of reaction. We also describe a neuron characterized by an intrinsic periodicity of firing not connected with the dynamics of arriving stimuli. 相似文献
2.
Spike discharges of medullary units ofRana ridibunda in response to tones of optimal frequency for the neuron, with sinusoidal amplitude modulation, was studied. Reproduction of sound modulation in unit activity was assessed by the use of phase histograms of responses corresponding to the period of modulation. Amplitude modulation was reproduced in the firing pattern of neurons of the dorsal nucleus over a wide range of modulation frequencies and carrier levels. Accentuation of small changes of amplitude for modulation frequencies of 70–150 Hz was observed in many neurons of the superior olives. The phase of the response was a linear function of modulation frequency both in the dorsal nucleus and in the superior olives. The greatest enhancement of amplitude changes corresponded to low modulation indices.Academician N. N. Andreev Acoustics Institute, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 17, No. 3, pp. 390–396, May–June, 1985. 相似文献
3.
N. G. Bibikov 《Neurophysiology》1990,22(2):180-186
Spike response in torus semicircularis units to the effects of uninterrupted characteristic frequency tones amplitude-modulated by pseudorandom noise were investigated during experiments on immobilizedRana ridibunda. Period histograms of modulating waveform of 512 msec duration (both modulating polarities) were produced for 32 units. Almost all neurons investigated responded exclusively to the positive half of the modulating signal. Difference histograms obtained by calculating period histograms for different polarities of the envelope faithfully reproduced the dynamics of signal amplitude in four units. The remainder responded only to envelope maxima, without reproducing amplitude dynamics among these; over half the units represented only some of the envelope maxima, moreover. Certain cells were found which retained their specific pattern of response to pseudorandom noise over a wide range of carrier intensities.N. N. Andreev Acoustical Institute, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 2, pp. 227–235, March–April, 1990. 相似文献
4.
P Schlegel 《Journal de physiologie》1979,75(4):421-428
Action potentials evoked in a phase-locked 1 : 1 relationship by natural electric organ discharges (EOD) were recorded extracellularly and intracellularly from single mesencephalic magnocellular nucleus units in the high frequency electric fish Sternarchus albifrons (Gymnotidae). This activity has been shown to be the result of an extrinsic feedback of the electrosensory system and is probably important for the socalled jamming avoidance response triggered artificial electric pulses when delivered into the water in a 1 : 1 relationship at intensities higher than the EOD. In the same way, artificial pulses of frequency near EOD could either drive or, due to beats, greatly disturb the regular firing of the units. More insight into the neural mechanism was yielded by single EOD-triggered shocks provoking a failure in firing of certain action potentials of the series and causing long-lasting (10-20 ms) accelerations and decelerations of the regular EOD-evoked firing (transient disturbance). Intracellular stimulations show similar effects. The biological significance of this neural mechanism for the fish's electroperception and JAR is discussed. 相似文献
5.
6.
7.
8.
H. Schulze F. W. Ohl P. Heil H. Scheich 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1997,181(6):573-589
Responses of multi-units in the auditory cortex (AC) of unanaesthetized Mongolian gerbils to pure tones and to linearly frequency modulated (FM) sounds were analysed. Three types of responses to pure tones could be clearly distinguished on the basis of spectral tuning properties, response latencies and overall temporal response pattern. In response to FM sweeps these three types discharged in a temporal pattern similar to tone responses. However, for all type-1 units the latencies of some phasic response components shifted systematically as a function of range and/or speed of modulation. Measurements of response latencies to FMs revealed that such responses were evoked whenever the modulation reached a particular instantaneous frequency (Fi). Effective Fi was: (1) independent of modulation range and speed, (2) always reached before the modulation arrived at a local maximum of the frequency response function (FRF) and consequently differed for downward and upward sweeps, and (3) was correlated with the steepest slope of that FRF maximum. The three different types of units were found in discrete and separate fields or regions of the AC. It is concluded that gross temporal response properties are one of the key features distinguishing auditory cortical regions in the Mongolian gerbil. Accepted: 13 August 1997 相似文献
9.
10.
N G Bibikov S K Soroka V D Zharskaia 《Zhurnal evoliutsionno? biokhimii i fiziologii》1986,22(5):460-465
Individual cells which produce projections from the torus semicircularis in the frog have been visualized after injection of horseradish peroxidase (HRP) to various thalamic and isthmal areas. Labeled toral cells were observed if HRP had been injected to the posterodorsal areas of the thalamus or to the isthmal areas where lateral lemniscus fibers and cells of the premature lateral lemniscal nucleus are situated. Medium and large size cells in the rostrolateral torus semicircularis were mainly labeled. Thalamic injections of the HRP produced more labeled cells in the lateral part of the magnocellular nucleus, whereas isthmal injections produced labeled cells mainly in the lateral part of the laminar nucleus. A few HRP containing cells were observed in the principal nucleus of the torus. Specificity of the neuronal organisation of the auditory pathway in amphibians is discussed. 相似文献
11.
12.
Measurement of the thresholds of single unit responses in the cochlear nuclei of Vespertilionidae and Rhinolophidae to ultrasonic stimuli of different frequencies showed that some neurons in animals of both families have 2 or 3 characteristic frequencies. If the maximal of them is taken as the basic frequency, the other two characteristic frequencies are in the ratio of 1:2 and 1:3 to it. Corresponding to these characteristic frequencies, basic and complementary response regions were recorded. InMyotis oxygnathus (Vespertilionidae), using frequency-modulated echolocation signals, some neurons in the complementary response regions respond only to stimuli of average strength, i.e., the complementary response regions are "closed." The latent periods of the single unit responses are independent of stimulus frequency. Consequently, correlative reception of echolocation signals is absent at the level of the auditory system in bats.A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 9, No. 1, pp. 41–47, January–February, 1977. 相似文献
13.
14.
Unit responses in the rat inferior colliculi to amplitude-modulated sounds were investigated. Two parameters of these sounds were varied: the modulation and carrier frequencies. The first ranged from 1–5 to 100 Hz, while the range of the second was determined by the frequency-threshold curve of the neuron. Other parameters of the amplitude-modulated stimulus (depth of modulation, level of carrier intensity) were kept as constant as possible. Characteristics of the unit response are determined by the nature of the combination of the carrier and modulation frequencies used. If the carrier frequency was optimal, the range of reproduction of the modulation frequencies, the number of spikes in the response, the duration of the response, and the corresponding stimulus duration were maximal; the response appeared at an earlier phase of the modulation cycle. A change in carrier frequency from optimal toward both higher and lower frequencies induced a regular change in all characteristics of the response: narrowing of the range of reproduction of the modulation rhythm amounting in some cases to total cessation of response, a decrease in the number of spikes per response, and shortening of the response in some cases as far as the appearance of only the initial response, while the response itself occurred in later phases of the modulation cycle.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 4, No. 1, pp. 12–22, January–February, 1972. 相似文献
15.
The characteristics of extra- and intracellular responses of neurons in the AI region were studied in experiments with unanesthetized cats. It was established that auditory cortex neurons with similar best frequencies showed different forms of responses to tones of the corresponding frequency. About 40% of the auditory cortex neurons generated on responses to tone presentation. On — off and off responses were found in 27% of the neurons. Cortical neurons (27%) in which stimulation or inhibition of impulse discharge persisted throughout tone action were assigned to the tonic type group of cells. Approximately 6% of neurons in the AI region did not respond to a tone. During intracellular recording about 85% of the neurons responded to the turning on and/or off of a tone by generating an action potential followed by an IPSI. In 96% of the cortical neurons studied the IPSPs were a constant component of the intracellular responses to a tone. It is concluded that the inhibition of the impulse activity of the given neurons is of primarily a postsynaptic origin. Neurons showing one or another form of response differ from one another in the relative intensity and time characteristics of excitatory and inhibitory processes interacting on their postsynaptic membranes. In neurons of the phasic type inhibitory processes are dominant over excitatory, while excitatory processes are predominant in neurons of the tonic type.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 4, pp. 500–508, July–August, 1985. 相似文献
16.
J. Mogdans H. Bleckmann 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1999,185(2):173-180
This report describes the responses of single afferent fibers in the posterior lateral line nerve of the goldfish, Carassius auratus, to pure tone and to amplitude-modulated sinusoidal wave stimuli generated by a dipole source (stationary vibrating sphere). Responses were characterized in terms of output-input functions relating responses to vibration amplitude, peri-stimulus time histograms relating responses to stimulus duration, and the degree of phase-locking to both the carrier frequency and the modulation frequency of the amplitude-modulated stimulus. All posterior lateral line nerve fibers responded to a pure sine wave with sustained and strongly phase-locked discharges. When stimulated with amplitude-modulated sine waves, fibers responded with strong phase-locking to the carrier frequency and, in addition, discharge rates were modulated according to the amplitude modulation frequency. However, phase-locking to the amplitude modulation frequency was weaker than phase-locking to the carrier frequency. The data indicate that the discharges of primary lateral line afferents encode both the carrier frequency and the modulation frequency of an amplitude-modulated wave stimulus. Accepted: 2 June 1999 相似文献
17.
18.
Wen-Yu Lin Albert S. Feng 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2001,187(9):699-712
Previous studies in the inferior colliculus have shown that spatial separation of signal and noise sources improves signal detection. In this study, we investigated the free-field unmasking response properties of single fibers in the auditory nerve--these were compared to those of inferior colliculus neurons under the same experimental conditions to test the hypothesis that central processing confers advantages for signal detection in the presence of spatially separated noise. For each neuron, we determined the detection threshold for a probe at the unit's best azimuth under three conditions: (1) by itself, (2) when a masker at a constant level was also presented at the unit's best azimuth, and (3) when the masker was positioned at different azimuths. We found that, on average, maskers presented at a unit's best azimuth elevated the probe detection threshold by 4.22 dB in the auditory nerve and 10.97 dB in the inferior colliculus. Angular separation of probe and masker sources systematically reduced the masking effect. The maximum masking release was on average 2.90 dB for auditory nerve fibers and 9.40 dB for inferior colliculus units. These results support the working hypothesis, suggesting that central processing contributes to the stronger free-field unmasking in the inferior colliculus. 相似文献
19.
A. N. Tal'nov 《Neurophysiology》1985,17(2):147-154
Responses of 93 neurons to isolated presentation of a single click and a series of 10 clicks with following frequency of 1000 Hz and responses of 66 neurons after the click had become a positive conditioned stimulus, and a series of 10 clicks had become a differential, negative stimulus, were investigated in chronic experiments on cats. Formation and realization of differential inhibition of an instrumental food reflex was shown not to lead to strengthening of inhibition in the auditory cortex, and the process of differential inhibition itself within the primary auditory cortex is not essentially an inhibitory process. Identical changes were found in responses of auditory cortical neurons to both positive and negative conditioned stimuli after training, evidence that neurons of the primary auditory cortex play a similar role in realization of the instrumental reflex and in its differential inhibition. It is suggested that the presence of groups of neurons responding by excitation or inhibition only to presentation of a stimulus with definite informative value is of great importance for differentiation.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukranian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 2, pp. 212–221, March–April, 1985. 相似文献