首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurotransmitter gamma-aminobutyric acid (GABA) release to the synaptic clefts is mediated by the formation of a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, which includes two target SNAREs syntaxin 1A and SNAP-25 and one vesicle SNARE VAMP-2. The target SNAREs syntaxin 1A and SNAP-25 form a heterodimer, the putative intermediate of the SNARE complex. Neurotransmitter GABA clearance from synaptic clefts is carried out by the reuptake function of its transporters to terminate the postsynaptic signaling. Syntaxin 1A directly binds to the neuronal GABA transporter GAT-1 and inhibits its reuptake function. However, whether other SNARE proteins or SNARE complex regulates GABA reuptake remains unknown. Here we demonstrate that SNAP-25 efficiently inhibits GAT-1 reuptake function in the presence of syntaxin 1A. This inhibition depends on SNAP-25/syntaxin 1A complex formation. The H3 domain of syntaxin 1A is identified as the binding sites for both SNAP-25 and GAT-1. SNAP-25 binding to syntaxin 1A greatly potentiates the physical interaction of syntaxin 1A with GAT-1 and significantly enhances the syntaxin 1A-mediated inhibition of GAT-1 reuptake function. Furthermore, nitric oxide, which promotes SNAP-25 binding to syntaxin 1A to form the SNARE complex, also potentiates the interaction of syntaxin 1A with GAT-1 and suppresses GABA reuptake by GAT-1. Thus our findings delineate a further molecular mechanism for the regulation of GABA reuptake by a target SNARE complex and suggest a direct coordination between GABA release and reuptake.  相似文献   

2.
The SNARE proteins syntaxin, SNAP-25, and synaptobrevin play a central role during Ca(2+)-dependent exocytosis at the nerve terminal. Whereas syntaxin and SNAP-25 are located in the plasma membrane, synaptobrevin resides in the membrane of synaptic vesicles. It is thought that gradual assembly of these proteins into a membrane-bridging ternary SNARE complex ultimately leads to membrane fusion. According to this model, syntaxin and SNAP-25 constitute an acceptor complex for synaptobrevin. In vitro, however, syntaxin and SNAP-25 form a stable complex that contains two syntaxin molecules, one of which is occupying and possibly obstructing the binding site of synaptobrevin. To elucidate the assembly pathway of the synaptic SNAREs, we have now applied a combination of fluorescence and CD spectroscopy. We found that SNARE assembly begins with the slow and rate-limiting interaction of syntaxin and SNAP-25. Their interaction was prevented by N-terminal but not by C-terminal truncations, suggesting that for productive assembly all three participating helices must come together simultaneously. This suggests a complicated nucleation process that might be the reason for the observed slow assembly rate. N-terminal truncations of SNAP-25 and syntaxin also prevented the formation of the ternary complex, whereas neither N- nor C-terminal shortened synaptobrevin helices lost their ability to interact. This suggests that binding of synaptobrevin occurs after the establishment of the syntaxin-SNAP-25 interaction. Moreover, binding of synaptobrevin was inhibited by an excess of syntaxin, suggesting that a 1:1 interaction of syntaxin and SNAP-25 serves as the on-pathway SNARE assembly intermediate.  相似文献   

3.
Abstract : The synaptic plasma membrane proteins syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) are central participants in synaptic vesicle trafficking and neurotransmitter release. Together with the synaptic vesicle protein synaptobrevin/vesicle-associated membrane protein (VAMP), they serve as receptors for the general membrane trafficking factors N -ethylmaleimide-sensitive factor (NSF) and soluble NSF attachment protein (α-SNAP). Consequently, syntaxin, SNAP-25, and VAMP (and their isoforms in other membrane trafficking pathways) have been termed SNAP receptors (SNAREs). Because protein phosphorylation is a common and important mechanism for regulating a variety of cellular processes, including synaptic transmission, we have investigated the ability of syntaxin and SNAP-25 isoforms to serve as substrates for a variety of serine/threonine protein kinases. Syntaxins 1A and 4 were phosphorylated by casein kinase II, whereas syntaxin 3 and SNAP-25 were phosphorylated by Ca2+ - and calmodulin-dependent protein kinase II and cyclic AMP-dependent protein kinase, respectively. The biochemical consequences of SNARE protein phosphorylation included a reduced interaction between SNAP-25 and phosphorylated syntaxin 4 and an enhanced interaction between phosphorylated syntaxin 1A and the synaptic vesicle protein synaptotagmin I, a potential Ca2+ sensor in triggering synaptic vesicle exocytosis. No other effects on the formation of SNARE complexes (comprised of syntaxin, SNAP-25, and VAMP) or interactions involving n-Sec1 or α-SNAP were observed. These findings suggest that although phosphorylation does not directly regulate the assembly of the synaptic SNARE complex, it may serve to modulate SNARE complex function through other proteins, including synaptotagmin I.  相似文献   

4.
Exocytosis - syntaxin - synaptobrevin - SNARE synaptic vesicle The lamprey giant reticulospinal synapse can be used to manipulate the molecular machinery of synaptic vesicle exocytosis by presynaptic microinjection. Here we test the effect of disrupting the function of the SNARE protein SNAP-25. Polyclonal SNAP-25 antibodies were shown in an in vitro assay to inhibit the binding between syntaxin and SNAP-25. When microinjected presynaptically, these antibodies produced a potent inhibition of the synaptic response. Ba2+ spikes recorded in the presynaptic axon were not altered, indicating that the effect was not due to a reduced presynaptic Ca2+ entry. Electron microscopic analysis showed that synaptic vesicle clusters had a similar organization in synapses of antibody-injected axons as in control axons, and the number of synaptic vesicles in apparent contact with the presynaptic plasma membrane was also similar. Clathrin-coated pits, which normally occur at the plasma membrane around stimulated synapses, were not detected after injection of SNAP-25 antibodies, consistent with a blockade of vesicle cycling. Thus, SNAP-25 antibodies, which disrupt the interaction with syntaxin, inhibit neurotransmitter release without affecting the number of synaptic vesicles at the plasma membrane. These results provide further support to the view that the formation of SNARE complexes is critical for membrane fusion, but not for the targeting of synaptic vesicles to the presynaptic membrane.  相似文献   

5.
Synaptic vesicle fusion is catalyzed by assembly of synaptic SNARE complexes, and is regulated by the synaptic vesicle GTP-binding protein Rab3 that binds to RIM and to rabphilin. RIM is a known physiological regulator of fusion, but the role of rabphilin remains obscure. We now show that rabphilin regulates recovery of synaptic vesicles from use-dependent depression, probably by a direct interaction with the SNARE protein SNAP-25. Deletion of rabphilin dramatically accelerates recovery of depressed synaptic responses; this phenotype is rescued by viral expression of wild-type rabphilin, but not of mutant rabphilin lacking the second rabphilin C2 domain that binds to SNAP-25. Moreover, deletion of rabphilin also increases the size of synaptic responses in synapses lacking the vesicular SNARE protein synaptobrevin in which synaptic responses are severely depressed. Our data suggest that binding of rabphilin to SNAP-25 regulates exocytosis of synaptic vesicles after the readily releasable pool has either been physiologically exhausted by use-dependent depression, or has been artificially depleted by deletion of synaptobrevin.  相似文献   

6.
The regulation of multiple phases of the life cycle of synaptic vesicles is carried out by a complex series of protein-protein interactions. According to the SNARE hypothesis the core of these interactions is a heterotrimeric complex formed by syntaxin, SNAP-25, and VAMP-synaptobrevin. Other proteins interacting with the core of the SNARE complex, such as voltage-activated calcium channels and synaptotagmin (a putative calcium sensor), are considered crucial for the calcium dependence of release and also molecular mediators of synaptic plasticity. Here the interaction of synaptotagmin with SNARE proteins was studied in immunoprecipitated native complexes, and the effects of previous phosphorylation-dephosphorylation on this interaction were analyzed. It is surprising that the interaction of synaptotagmin with syntaxin and SNAP-25 in native complexes was not found to be calcium-dependent. However, previous incubation under dephosphorylating conditions decreased the synaptotagmin-syntaxin interaction. Stimulation of Ca2+/calmodulin-dependent protein kinase II, which endogenously phosphorylates synaptotagmin in synaptic vesicles, increased the interaction of syntaxin and SNAP-25 with synaptotagmin (particularly when measured in the presence of calcium), as well as increasing the binding of the kinase itself. These results suggest that calcium decreases synaptotagmin-t-SNARE interactions after dephosphorylation and increases them after phosphorylation. Overall, these results imply a phosphorylation-dephosphorylation balance in regulation of the synaptotagmin-t-SNARE interaction and suggest a role for protein phosphorylation in the modulation of calcium sensitivity in transmitter release.  相似文献   

7.
The synaptic protein SNAP-25 is an important component of the neurotransmitter release machinery, although its precise function is still unknown. Genetic analysis of other synaptic proteins has yielded valuable information on their role in synaptic transmission. In this study, we performed a mutagenesis screen to identify new SNAP-25 alleles that fail to complement our previously isolated recessive temperature-sensitive allele of SNAP-25, SNAP-25(ts). In a screen of 100,000 flies, 26 F(1) progeny failed to complement SNAP-25(ts) and 21 of these were found to be null alleles of SNAP-25. These null alleles die at the pharate adult stage and electroretinogram recordings of these animals reveal that synaptic transmission is blocked. At the third instar larval stage, SNAP-25 nulls exhibit nearly normal neurotransmitter release at the neuromuscular junction. This is surprising since SNAP-25(ts) larvae exhibit a much stronger synaptic phenotype. Our evidence indicates that a related protein, SNAP-24, can substitute for SNAP-25 at the larval stage in SNAP-25 nulls. However, if a wild-type or mutant form of SNAP-25 is present, then SNAP-24 does not appear to take part in neurotransmitter release at the larval NMJ. These results suggest that the apparent redundancy between SNAP-25 and SNAP-24 is due to inappropriate genetic substitution.  相似文献   

8.
Characterization of the Palmitoylation Domain of SNAP-25   总被引:5,自引:2,他引:3  
Abstract: SNAP-25 (synaptosomal associated protein of 25 kDa) is a neural specific protein that has been implicated in the synaptic vesicle docking and fusion process. It is tightly associated with membranes, and it is one of the major palmitoylated proteins found in neurons. The functional role of palmitoylation for SNAP-25 is unclear. In this report, we show that the palmitate of SNAP-25 is rapidly turned over in PC12 cells, with a half-life of ∼3 h, and the half-life for the protein is 8 h. Mutation of Cys to Ser at positions 85, 88, 90, and 92 reduced the palmitoylation to 9, 21, 42, and 35% of the wild-type protein, respectively. Additional mutations of either Cys85,88 or Cys90,92 nearly abolished palmitoylation of the protein. A similar effect on membrane binding for the mutant SNAP-25 was observed, which correlated with the degree of palmitoylation. These results suggest that all four Cys residues are involved in palmitoylation and that membrane association of SNAP-25 may be regulated through dynamic palmitoylation.  相似文献   

9.
Synaptic vesicle exocytosis requires three SNARE (soluble N-ethylmaleimide-sensitive-factor attachment protein receptor) proteins: syntaxin and SNAP-25 on the plasma membrane (t-SNAREs) and synaptobrevin/VAMP on the synaptic vesicles (v-SNARE). Vesicular synaptotagmin 1 is essential for fast synchronous SNARE-mediated exocytosis and interacts with the SNAREs in brain material. To uncover the step at which synaptotagmin becomes linked to the three SNAREs, we purified all four proteins from brain membranes and analyzed their interactions. Our study reveals that, in the absence of calcium, native synaptotagmin 1 binds the t-SNARE heterodimer, formed from syntaxin and SNAP-25. This interaction is both stoichiometric and of high affinity. Synaptotagmin contains two divergent but conserved C2 domains that can act independently in calcium-triggered phospholipid binding. We now show that both C2 domains are strictly required for the calcium-independent interaction with the t-SNARE heterodimer, indicating that the double C2 domain structure of synaptotagmin may have evolved to acquire a function beyond calcium/phospholipid binding.  相似文献   

10.
The interaction of the presynaptic membrane proteins SNAP-25 and syntaxin with the synaptic vesicle protein synaptobrevin (VAMP) plays a key role in the regulated exocytosis of neurotransmitters. Clostridial neurotoxins, which proteolyze these polypeptides, are potent inhibitors of neurotransmission. The cytoplasmic domains of the three membrane proteins join into a tight SDS-resistant complex (Hayashi et al., 1994). Here, we show that this reconstituted complex, as well as heterodimers composed of syntaxin and SNAP-25, can be disassembled by the concerted action of the N-ethylmaleimide-sensitive factor, NSF, and the soluble NSF attachment protein, alpha-SNAP. alpha-SNAP binds to predicted alpha-helical coiled-coil regions of syntaxin and SNAP-25, shown previously to be engaged in their direct interaction. Synaptobrevin, although incapable of binding alpha-SNAP individually, induced a third alpha-SNAP binding site when associated with syntaxin and SNAP-25 into heterotrimers. NSF released prebound alpha-SNAP from full-length syntaxin but not from a syntaxin derivative truncated at the N-terminus. Disassembly of complexes containing this syntaxin mutant was impaired, indicating a critical role for the N-terminal domain in the alpha-SNAP/NSF-mediated dissociation process. Complexes containing C-terminally deleted SNAP-25 derivatives, as generated by botulinal toxins type A and E, were dissociated more efficiently. In contrast, the N-terminal fragment generated from synaptobrevin by botulinal toxin type F produced an SDS-sensitive complex that was poorly dissociated.  相似文献   

11.
The cellular molecular motor kinesin-1 mediates the microtubule-dependent transport of a range of cargo. We have previously identified an interaction between the cargo-binding domain of kinesin-1 heavy chain KIF5B and the membrane-associated SNARE proteins SNAP-25 and SNAP-23. In this study we further defined the minimal SNAP-25 binding domain in KIF5B to residues 874-894. Overexpression of a fragment of KIF5B (residues 594-910) resulted in significant colocalization with SNAP-25 with resulting blockage of the trafficking of SNAP-25 to the periphery of cells. This indicates that kinesin-1 facilitates the transport of SNAP-25 containing vesicles as a prerequisite to SNAP-25 driven membrane fusion events.  相似文献   

12.
The synaptosome-associated protein of 25 kDa (SNAP-25) interacts with syntaxin 1 and vesicle-associated membrane protein 2 (VAMP2) to form a ternary soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) complex that is essential for synaptic vesicle exocytosis. We report a novel RING finger protein, Spring, that specifically interacts with SNAP-25. Spring is exclusively expressed in brain and is concentrated at synapses. The association of Spring with SNAP-25 abolishes the ability of SNAP-25 to interact with syntaxin 1 and VAMP2 and prevents the assembly of the SNARE complex. Overexpression of Spring or its SNAP-25-interacting domain reduces Ca(2+)-dependent exocytosis from PC12 cells. These results indicate that Spring may act as a regulator of synaptic vesicle exocytosis by controlling the availability of SNAP-25 for the SNARE complex formation.  相似文献   

13.
rbSec1 is a mammalian neuronal protein homologous to the yeast SEC1 gene product which is required for exocytosis. Mutations in Sec1 homologues in the nervous systems of C. elegans and D. melanogaster lead to defective neurotransmitter secretion. Biochemical studies have shown that recombinant rbSec1 binds syntaxin 1 but not SNAP-25 or synaptobrevin/VAMP, the two proteins which together with syntaxin 1 form the synaptic SNARE complex. In this study we have examined the subcellular localization of rbSec1 and the degree of interaction between rbSec1 and syntaxin 1 in situ. rbSec1, which we show here to be represented by two alternatively spliced isoforms, rbSec1A and B, has a widespread distribution in the axon and is not restricted to the nerve terminal. This distribution parallels the localization of syntaxin 1 and SNAP-25 along the entire axonal plasmalemma. rbSec1 is found in a soluble and a membrane-associated form. Although a pool of rbSec1 is present on the plasmalemma, the majority of membrane-bound rbSec1 is not associated with syntaxin 1. We also show that rbSec1 is not part of the synaptic SNARE complex or of the syntaxin 1/SNAP-25 complex we show to be present in non-synaptic regions of the axon. Thus, in spite of biochemical studies demonstrating the high affinity interaction of rbSec1 and syntaxin 1, our results indicate that rbSec1 and syntaxin 1 are not stably associated. They also suggest that the function of rbSec1, syntaxin 1, and SNAP-25 is not restricted to synaptic vesicle exocytosis at the synapse.  相似文献   

14.
Uptake of botulinum neurotoxin into cultured neurons   总被引:10,自引:0,他引:10  
Keller JE  Cai F  Neale EA 《Biochemistry》2004,43(2):526-532
Botulinum neurotoxins (BoNTs) act within the synaptic terminal to block neurotransmitter release. The toxin enters the neuron by binding to neuronal membrane receptor(s), being taken up into an endosome-like compartment, and penetrating the endosome membrane via a pH-dependent translocation process. Once within the synaptic cytoplasm, BoNT serotypes A and E cleave separate sites on the C-terminus of the neuronal protein SNAP-25, one of the SNARE proteins required for synaptic vesicle fusion. In this study, we measured the effect of brief toxin exposure on SNAP-25 proteolysis in neuronal cell cultures as an indicator of toxin translocation. The results indicate that (1) uptake of both BoNT-A and -E is enhanced with synaptic activity induced by K+ depolarization in the presence of Ca2+ and (2) translocation of BoNT-A from the acidic endosomal compartment is slow relative to that of BoNT-E. Polyclonal antisera against each toxin protect cells when applied with the toxin during stimulation but has no effect when added immediately after toxin exposure, indicating that toxin endocytosis occurs with synaptic activity. Both serotypes cleave SNAP-25 at concentrations between 50 pM and 4 nM. IC50 values for SNAP-25 cleavage are approximately 0.5 nM for both serotypes. Inhibition of the pH-dependent translocation process by pretreating cultures with concanamycin A (Con A) prevents cleavage of SNAP-25 with IC50 values of approximately 25 nM. Addition of Con A at times up to 15 min after toxin exposure abrogated BoNT-A action; however, addition of Con A after 40 min was no longer protective. In contrast, Con A inhibited, but did not prevent, translocation of BoNT-E even when added immediately after toxin exposure, indicating that pH-dependent translocation of BoNT-E is rapid relative to that of BoNT-A. This study demonstrates that uptake of both BoNT-A and -E is enhanced with synaptic activity and that translocation of the toxin catalytic moiety into the cytosol occurs at different rates for these two serotypes.  相似文献   

15.
16.
Syntaphilin: a syntaxin-1 clamp that controls SNARE assembly   总被引:7,自引:0,他引:7  
Lao G  Scheuss V  Gerwin CM  Su Q  Mochida S  Rettig J  Sheng ZH 《Neuron》2000,25(1):191-201
Syntaxin-1 is a key component of the synaptic vesicle docking/fusion machinery that forms the SNARE complex with VAMP/synaptobrevin and SNAP-25. Identifying proteins that modulate SNARE complex formation is critical for understanding the molecular mechanisms underlying neurotransmitter release and its modulation. We have cloned and characterized a protein called syntaphilin that is selectively expressed in brain. Syntaphilin competes with SNAP-25 for binding to syntaxin-1 and inhibits SNARE complex formation by absorbing free syntaxin-1. Transient overexpression of syntaphilin in cultured hippocampal neurons significantly reduces neurotransmitter release. Furthermore, introduction of syntaphilin into presynaptic superior cervical ganglion neurons in culture inhibits synaptic transmission. These findings suggest that syntaphilin may function as a molecular clamp that controls free syntaxin-1 availability for the assembly of the SNARE complex, and thereby regulates synaptic vesicle exocytosis.  相似文献   

17.
The Ca(2+)-triggered release of neurotransmitters is mediated by fusion of synaptic vesicles with the plasma membrane. The molecular machinery that translates the Ca(2+) signal into exocytosis is only beginning to emerge. The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins syntaxin, SNAP-25, and synaptobrevin are central components of the fusion apparatus. Assembly of a membrane-bridging ternary SNARE complex is thought to initiate membrane merger, but the roles of other factors are less understood. Complexins are two highly conserved proteins that modulate the Ca(2+) responsiveness of neurotransmitter release. In vitro, they bind in a 1:1 stoichiometry to the assembled synaptic SNARE complex, making complexins attractive candidates for controlling the exocytotic fusion apparatus. We have now performed a detailed structural, kinetic, and thermodynamic analysis of complexin binding to the SNARE complex. We found that no major conformational changes occur upon binding and that the complexin helix is aligned antiparallel to the four-helix bundle of the SNARE complex. Complexins bound rapidly (approximately 5 x 10(7) m(-1) s(-1)) and with high affinity (approximately 10 nm), making it one of the fastest protein-protein interactions characterized so far in membrane trafficking. Interestingly, neither affinity nor binding kinetics was substantially altered by Ca(2+) ions. No interaction of complexins was detectable either with individual SNARE proteins or with the binary syntaxin x SNAP-25 complex. Furthermore, complexin did not promote the formation of SNARE complex oligomers. Together, our data suggest that complexins modulate neuroexocytosis after assembly of membrane-bridging SNARE complexes.  相似文献   

18.
Synaptic transmission is conducted by neurotransmitters released from presynaptic nerve terminals by means of Ca2+-dependent exocytosis of synaptic vesicles. Formation of a complex of soluble N-ethylmaleimide-sensitive fusion protein receptor (SNARE) proteins, including vesicle-associated membrane protein-2 (VAMP-2) in the synaptic vesicle membrane, and syntaxin 1 and synaptosomal-associated protein of 25 kDa (SNAP-25) in the plasma membrane, is essential for exocytosis. Ionomycin treatment of cultured rat cerebellar granule cells led to cleavage of SNAP-25, but not syntaxin 1 and VAMP-2, that was dependent on extracellular Ca2+. Cleavage was also induced by N-methyl-D-aspartate (NMDA) treatment, but not by depolarization. The use of various site-specific antibodies to SNAP-25, suggested that the cleavage site was in the N-terminal domain of SNAP-25. Calpain inhibitors abolished the Ca2+-dependent cleavage of SNAP-25 and markedly facilitated Ca2+-dependent glutamate (Glu) release from cerebellar granule cells. These results suggest that calpain may play an important role in the long-lasting regulation of synaptic transmission by suppressing neurotransmitter release, possibly through the proteolytic cleavage of SNAP-25.  相似文献   

19.
SNAP-23 and SNAP-25 are palmitoylated in vivo.   总被引:6,自引:0,他引:6  
The neuronal presynaptic membrane t-SNARE complex consists of the transmembrane protein syntaxin with the palmitoylated protein SNAP-25. In non-neuronal tissues, SNAP-23 replaces SNAP-25 in the t-SNARE complex, although the mechanism of membrane anchoring of SNAP-23 has not been determined. We now report that like SNAP-25, SNAP-23 is palmitoylated in vivo on one or more cysteine residues present in a central "palmitoylation domain." Interestingly, SNAP-23 is palmitoylated less well than SNAP-25, and in vivo binding studies indicate a correlation between the extent of palmitoylation and the ability of SNAP-23 or SNAP-25 to bind to syntaxin in vivo.  相似文献   

20.
SNAP-25 is a component of the SNARE complex that is involved in membrane docking and fusion. Using a yeast two-hybrid screen, we identify a novel interaction between SNAP-25 and cytoplasmic Lek1 (cytLEK1), a protein previously demonstrated to associate with the microtubule network. The binding domains within each protein were defined by yeast two-hybrid, coimmunoprecipitation, and colocalization studies. Confocal analyses reveal a high degree of colocalization between the proteins. In addition, the endogenous proteins can be isolated as a complex by immunoprecipitation. Further analyses demonstrate that cytLEK1 and SNAP-25 colocalize and coprecipitate with Rab11a, myosin Vb, VAMP2, and syntaxin 4, components of the plasma membrane recycling pathway. Overexpression of the SNAP-25-binding domain of cytLEK1, and depletion of endogenous Lek1 alters transferrin trafficking, consistent with a function in vesicle recycling. Taken together, our studies indicate that cytLEK1 is a link between recycling vesicles and the microtubule network through its association with SNAP-25. This interaction may play a key role in the regulation of the recycling endosome pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号