首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Exploring the relative contribution of spatial factors and environmental variables in shaping communities is of widespread interest in biodiversity conservation and environmental management. Stream communities are hierarchically regulated by environmental variables over multiple spatial scales, and the reaction of different organisms to stressors are still equivocal. We sampled both macroinvertebrates and diatom at 80 sites and additional 10 sites for macroinvertebrates, field measured and laboratory analyzed environmental variables, from the tributaries of Qiantang River, Yangtze River Delta China in 2011. We used PCNM (principal coordinates of neighbor matrices) to generate spatial predictors. We applied redundancy analysis and variation partitioning procedures to identify key spatial and environmental factors, and to quantify their relative roles in shaping diatom and macroinvertebrate assemblages. Our results demonstrated the role of spatial and environmental variables differed in shaping benthic diatom and macroinvertebrate. Diatom assemblage variations were better explained by spatial factors, however macroinvertebrate assemblage variations were better explained by environmental variables. In terms of environmental variables, catchment scale variables (e.g., land use estimators, land use diversity) played the primary role in determining the patterns of both diatom and macroinvertebrate assemblages, whereas the influence of reach-scale variables (e.g., pH, substrates, and nutrients) appeared less. However, nutrients were the stronger factors influencing benthic diatom, whereas physical habitat (e.g., substrates) played more important role than water chemistry in structuring macroinvertebrates. Our results provided more evidence to the incorporation of spatial factors interpreting spatial patterns of stream organisms, and highlighted the useful of multiple organisms and environmental variables at different spatial scales in diagnosing mechanism of stream degradation and in building a sound stream conditions monitoring program for Yangtze River Delta.  相似文献   

3.
Diatoms and macroinvertebrates are both commonly used for biological assessment of stream condition. As the use of biological assessment techniques increases, resource managers will need to make decisions on which biological tool to use for a particular study. In a study of the Kiewa River, Victoria, Australia we assessed these two components of the biota—macroinvertebrates and diatoms—using indices and pattern analysis, and comparing them with an a priori landscape classification. We also assessed the relationship exhibited between the biological results and environmental variables which are usually significant in stream ecosystems. To make the data comparable we used categorical abundances for both data sets. The pattern analyses showed complementary results, with diatoms more closely related to water quality variables, whereas macroinvertebrates were primarily related to catchment and habitat features. An analysis of a combined data set (diatoms plus macroinvertebrates) showed no extra information was gained. Using categorisation to create consistency between data sets was shown to reduce the information and affect results from the diatom analyses. The results suggested that the locally derived bioassessment models and indices provided a more accurate assessment of the sites than the overseas-derived diatom index. The outcomes are complicated by issues of data weighting, whereby a presence/absence diatom index may have performed better than abundance-weighted indices due to strong dominance of one or two species at a site. Future comparisons will benefit from an increase in the knowledge of regional diatom taxonomy and autecology.  相似文献   

4.
不同养分和水分管理模式对水稻土质量的影响及其综合评价   总被引:20,自引:1,他引:20  
田间小区试验下 ,通过对土壤理化和生物学特性指标的测定和分析 ,系统比较和研究了不同养分和水分管理模式对水稻土质量的影响及其综合评价。研究结果表明 :在干湿交替和控水模式下 ,有机无机肥配施可明显改善水稻土壤物理特性 ,提高土壤的有效养分含量 ,增加土壤酶的活性和土壤微生物生物量。在连续淹水下 ,土壤中加入有机物料 ,特别是厩肥 ,加剧了土壤的还原过程 ,削弱了有机肥料对水稻土理化特性和生物学特性的改善效果。模糊综合评判显示 ,有机无机肥配施的水稻土在干湿交替的水分模式下 ,其质量指标综合表现较好 ,特别是厩肥与化肥配施和干湿交替的水肥模式组合的隶属度为 0 .74 78,其土壤质量指标综合表现为最好。单施化肥和连续淹水的肥水模式组合的隶属度最低 ,为 0 .4 112  相似文献   

5.
1. Semi‐aquatic birds may be sensitive to altered water quality. While avian species are not used in the bioassessment of streams, they may complement the more common use of benthic macroinvertebrates and fish. We estimated the extent to which water quality can predict attributes of the populations of one common semi‐aquatic bird, the American dipper (Cinclus mexicanus). 2. First, we estimated dipper presence/absence in relation to water quality as measured by a multimetric assessment index and individual bioassessment metrics. Second, we estimated dipper territory area and reproductive success in response to variation in water quality. We studied the diet, territory area and fecundity of dippers and sampled benthic macroinvertebrates, water chemistry and physical variables at 32 sites with and 17 sites without nesting dippers. 3. Dipper presence was only weakly related to chemical, physical and commonly recorded bioassessment metrics such as per cent Ephemeroptera, Plecoptera and Trichoptera (%EPT). Dippers were strongly related to the abundance of their common prey, Drunella and Heptageniidae, which are only a small component of the commonly recorded bioassessment metrics. The variances in territory area and reproductive success were weakly predicted by water quality variables. 4. Dipper presence reflected disturbance as measured by their common prey, showing that lower abundance of these stream invertebrates affected this semi‐aquatic bird. We suggest dipper presence/absence might be used in multimetric indices of biotic integrity for the bioassessment of streams.  相似文献   

6.
Multiple stressors threaten stream physical and biological quality, including elevated nutrients and other contaminants, riparian and in-stream habitat degradation and altered natural flow regime. Unconventional oil and gas (UOG) development is one emerging stressor that spans the U.S. UOG development could alter stream sedimentation, riparian extent and composition, in-stream flow, and water quality. We developed indices to describe the watershed sensitivity and exposure to natural and anthropogenic disturbances and computed a vulnerability index from these two scores across stream catchments in six productive shale plays. We predicted that catchment vulnerability scores would vary across plays due to climatic, geologic and anthropogenic differences. Across-shale averages supported this prediction revealing differences in catchment sensitivity, exposure, and vulnerability scores that resulted from different natural and anthropogenic environmental conditions. For example, semi-arid Western shale play catchments (Mowry, Hilliard, and Bakken) tended to be more sensitive to stressors due to low annual average precipitation and extensive grassland. Catchments in the Barnett and Marcellus-Utica were naturally sensitive from more erosive soils and steeper catchment slopes, but these catchments also experienced areas with greater UOG densities and urbanization. Our analysis suggested Fayetteville and Barnett catchments were vulnerable due to existing anthropogenic exposure. However, all shale plays had catchments that spanned a wide vulnerability gradient. Our results identify vulnerable catchments that can help prioritize stream protection and monitoring efforts. Resource managers can also use these findings to guide local development activities to help reduce possible environmental effects.  相似文献   

7.
The influence of the proximity of urbanization and agriculture to stream water quality is often difficult to quantify. The objectives of this study were to (1) compare the influence of far-field land-use, encompassing a watershed drainage area, to a near-field, 200-m buffer on each side of the stream in an attempt to determine on which zone of influence land-use has the largest impact on water quality, and (2) incorporate the EPA's Rapid Habitat Assessment Protocol (Barbour et al., 1999) to characterize the riparian and channel characteristics of a stream that influence water quality, which can improve New York State's monitoring protocols. Impacts were assessed through biological, chemical, and physical-habitat data from 29 streams located within a variety of land-use categories. Land-use was identified through USGS National Land Cover Data (NLCD). Principal components analysis (PCA) indicated that land-use and water quality variables were associated with non-point source contaminants (e.g. nutrients and specific conductance). Using Spearman's rank correlation coefficient, significant relationships between all three land-use types and stream water quality were determined at the 200-m buffer zone of influence. At the watershed zone of influence, water quality indicators did not correlate significantly with land cover type. DO and BAP values within the 200-m buffer zone varied inversely with the percentage of urban-land cover. The stronger correlation between land cover and stream water quality at the 200-m proximity than that of the watershed suggests that the presence of a riparian buffer zone between streams and agricultural and urban areas is a significant factor in reducing contamination from non-point source loading.  相似文献   

8.
9.
The influence of the fishpond on the chemical composition of the stream was mainly demonstrated by a higher concentration of organic matter and total phosphorus. Altogether, 128 species of algae and cyanobacteria were recorded in the stream. The species richness of phytobenthos per site was very similar. We observed the presence of typical phytoplankton species among the phytobenthos assemblages. Cyanobacteria species (Woronichinia naegeliana) were particularly dominant in the phytoplankton of the fishpond in autumn. Altogether, we identified 164 taxa of benthic macroinvertebrates in running waters of the stream. The structure of macrozoobenthos communities from all localities of the stream indicated good water quality and a low influence of environmental stressors with no negative effects of the fishpond. In total, six fish species were registered in all profiles. The condition of the fish population was mainly influenced by the fishery management of the stream (stocking, angling). Generally, the influence of the discharge water from the fishpond was recognizable in small changes in both chemical and biological variables of the stream. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
An analysis of the relationships between lotic macroinvertebrates and environmental variables was earned out on material from 60 riffle sites in streams in northern Sweden The approach involved the use of TWINSPAN classification and canonical correspondence analysis on presence/absence data from two seasons (spring and autumn) Variables most strongly associated with distribution patterns of assemblages were drainage area, elevation, water quality in terms of alkalinity, colour and phosphate and the presence of macrophytes The significance of affinities of different species to these variables are discussed The eight clusters resulting from the TWINSPAN analysis could biologically be interpreted as classes of taxa related to stream size, chemical conditions and algae A multiple regression analysis for predicting species nchness using three independent variables, viz drainage area amount or organic matter, and discharge was constructed The results of the study could be used as a starting point for further work on the community organization of benthie stream assemblages  相似文献   

11.
Significant variations in four biological measures of water quality with stream order and river basin were demonstrated for streams of the Black and Osage river basins of Missouri. Water quality criteria specific for each order and basin were then developed.Benthic macroinvertebrates from springs and stream orders 3–8 in the two river basins were sampled quarterly for one year with riffle nets and artificial substrate samplers. A total of 548 samples were taken at 137 stations. The average annual macroinvertebrate density, index of diversity, number of taxa, and number of mayfly and stonefly taxa were determined for each station. These measures showed significant differences (p < 0.05) across stream order within and between the two river basins. Total taxa, total mayfly and stonefly taxa, and diversity were highest in orders 4 and 5 with decreased values in lower and higher stream orders. Maximum organism densities occurred in intermediate order streams. These differences were attributed to the succession of physical changes from headwaters to mouth within each river and to the unique geomorphology of each catchment basin.Water quality criteria based on three of the four measures described above (with 95% confidence limits) were established for each stream order in each river basin. Criteria for the Osage River basin were then used to identify three streams in the basin affected by environmental disturbances (stream impoundment, channelization and sewage discharge). The use of order- and basin-specific criteria assures that the biological differences between streams caused by environmental disturbance can be distinguished from the natural biological differences between streams of different orders and drainages.  相似文献   

12.
In this study, we conducted field sampling to assess the relative influences of water and substrate quality on benthic macroinvertebrate communities living in the Jung‐rang stream, Korea. We collected macroinvertebrates and assessed physicochemical variables from three sites in the stream between May 2001 and January 2002. Sites were located approximately within 20 km from the headwater. The structure of the benthic macroinvertebrate communities may be strongly affected by the physical conditions inherent to the environment in which they live. In this stream, we detected profound differences in water temperature (18 ~ 19.75°C), the concentrations of suspended solids (3.935 ~ 7.87 mg/L), and demand for chemical oxygen (10.575 ~ 14.425 mg/L). Nonylphenol concentrations ranging from 0.375 to 0.55 ng/mL were found in the water, and the sediments were measured to contain between 2.45 and 3.425 ng/mL. We identified a total of 20 macroinvertebrate species, including seven species of Chironomidae, the most abundant of which was Chironomus flaviplumus. At none of the sites did we find any significant differences in the structure of the communities. Using canonical correspondence analysis for the relation of species and environmental variables, chemical oxygen demand and suspended sediment gradients (SS) had significant preferences for site 1 with SS. The results of our study suggest that physico‐chemical variables exerted complex effects on the structure of the benthic community in the Jung‐rang stream. This study supports the contention that physico‐chemical analyses as well as community analysis are valuable tools to assess the effect of pollution on the ecological condition of a stream. Chironomids, in particular, showed a high degree of tolerance against contaminants.  相似文献   

13.
The assessment of running water quality has a long tradition in the Czech Republic, but in the past it focused on the evaluation of organic pollution using the saprobic system. Considering the modern trends of stream ecological status evaluation in water management a new assessment system named PERLA was developed. The system is a complex of biological methods of ecological status assessment of running waters and connected activities in the Czech Republic. It involves 300 reference sites with respective biotic and abiotic data and a prediction model using a newly developed software HOBENT. The model generally follows the published mathematical principles of RIVPACS and represents the site specific and stressor non-specific approaches. The HOBENT software allows the prediction of the target assemblage of benthic macroinvertebrates for any site based on a set of environmental variables (latitude, longitude, distance from source, altitude, slope, catchment area, and stream order) which characterise the site. The predicted assemblage can be compared with the fauna observed at the same site. The comparison makes it possible to evaluate the extent of disturbance, expressed by index B. The model allows to evaluate spring, summer, and autumn seasonal data of the majority of wadable streams in the Czech Republic. The practical application of the PERLA system has started in 2001.  相似文献   

14.
1. Benthic stream animals, in particular macroinvertebrates, are good indicators of water quality, but sampling can be laborious to obtain accurate indices of biotic integrity. Thus, tools for bioassessment that include measurements other than macroinvertebrates would be valuable additions to volunteer monitoring protocols. 2. We evaluated the usefulness of a stream‐dependent songbird, the Louisiana waterthrush (waterthrush, Seiurus motacilla) and the Environmental Protection Agency Visual Habitat Assessment (EPA VHA) as indicators of the macrobenthos community in headwater streams of the Georgia Piedmont, U.S.A. We sampled macrobenthos, surveyed waterthrushes and measured habitat characteristics along 39 headwater reaches across 17 catchments ranging from forested to heavily urbanised or grazed by cattle. 3. Of the indicators considered, waterthrush occupancy was best for predicting relative abundances of macrobenthic taxa, while the EPA VHA was best for predicting Ephemeroptera–Plecoptera–Trichoptera (EPT) richness. Individual components of EPA VHA scores were much less useful as indicators of EPT richness and % EPT when compared with the total score. Waterthrushes were found along streams with higher % EPT, a lower Family Biotic Index (FBI) values and greater macrobenthos biomass. 4. While macroinvertebrates remain one of the most direct indicators of stream water quality, stream bird surveys and reach‐scale habitat assessments can serve as cost‐effective indicators of benthic macroinvertebrate communities. Using stream‐dependent birds as an early warning signal for degradation of stream biotic integrity could improve the efficacy of catchment monitoring programmes in detecting and identifying perturbations within the catchment.  相似文献   

15.
The river Woluwe in Brussels and Flanders (Belgium) is a small tributary of 15 km length that drains an area of 9400 ha in the Schelde river basin. The headwaters of the Woluwe are highly fragmented by diverse pond systems and are vaulted in the Brussels agglomeration. Hyporheic zones locally influence the water quality. The downstream stretch of the river receives sewage waters from households and industry. As the river Woluwe within a short distance represents a typical gradient from groundwater-fed sources in the forest towards severely polluted water, a comparative monitoring using diatoms, macroinvertebrates and macrophytes was done. The saprobic index based on diatoms, the Belgian Biotic Index (BBI) for macroinvertebrates and a macrophyte index based on the N-values of Ellenberg were used in this comparison and for estimating the correlation with the bimonthly measured chemical variables in 16 sampling stations. The diatom saprobic index and the macrophyte index were strongly correlated. Both groups showed strong correlations with phosphate, ammonium and chemical oxygen demand. The Belgian Biotic Index showed lower correlations with the nutrient variables, but was slightly better correlated to chemical oxygen demand, chloride and dissolved oxygen. None of the indices showed a correlation with nitrate. Local substrate or light conditions could interfere with the indicator system, especially for the macrophytes and occasionally for the macroinvertebrates. It was concluded that at least in this particular river system, the indices based on the primary producers were more indicative for the trophic status, whereas the BBI showed a broader relationship to the general degree of pollution. Therefore, these three indices are considered as complementary for monitoring the biological quality and the ecological status of a river system.  相似文献   

16.
  • 1 We used 94 sites within the Northern Lakes and Forests ecoregion spanning Minnesota, Wisconsin and Michigan to identify environmental variables at the catchment, reach and riparian scales that influence stream macroinvertebrates. Redundancy analyses (RDA) found significantly influential variables within each scale and compared their relative importance in structuring macroinvertebrate assemblages.
  • 2 Environmental variables included landcover, geology and groundwater delivery estimates at the catchment scale, water chemistry, channel morphology and stream habitat at the reach scale, and landcover influences at three distances perpendicular to the stream at the riparian scale. Macroinvertebrate responses were characterised with 22 assemblage attributes, and the relative abundance and presence/absence of 66 taxa.
  • 3 Each scale defined macroinvertebrates along an erosional to depositional gradient. Wisconsin's macroinvertebrate index of biotic integrity, Ephemeroptera–Plecoptera–Trichoptera taxa and erosional taxa corresponded with forest streams, whereas organic pollution tolerant, Chironomidae and depositional taxa corresponded with wetland streams. Reach scale analyses defined the gradient similarly as dissolved oxygen and wide, shallow channels (erosional) opposed instream macrophytes and pool habitats (depositional). Riparian forests within 30 m of the stream coincided with an erosional assemblage and biotic integrity.
  • 4 Next, we combined all significant environmental variables across scales to compare the relative influence of each spatial scale on macroinvertebrates. Partial RDA procedures described how much of the explained variance was attributable to each spatial scale and each interrelated scale combination.
  • 5 Our results appeared consistent with the concept of hierarchical functioning of scale in which large‐scale variables restrict the potential for macroinvertebrate traits or taxa at smaller spatial scales. Catchment and reach variables were equally influential in defining assemblage attributes, whereas the reach scale was more influential in determining relative abundance and presence/absence.
  • 6 Ultimately, comprehending the relative influence of catchment and reach scale properties in structuring stream biota will assist prioritising the scale at which to rehabilitate, manage and derive policies for stream ecosystem integrity.
  相似文献   

17.
We assessed the relative performance of diatoms and macroinvertebrates to measure municipal and industrial impacts on the ecological integrity of the three major rivers flowing through Addis Ababa. Both community metric and multivariate statistical techniques were used to analyze the environmental variables and species data along the pollution gradient. This study in the Addis Ababa urban area revealed that three biologically highly stressed rivers are being impacted primarily by physical habitat degradation and both point and nonpoint pollution. The macroinvertebrate composition was liable to severe physical habitat and chemical water quality degradation. Consequently, macroinvertebrates were less diverse and not found at all at the most polluted sites with very low dissolved oxygen levels. Based on community metrics and multivariate analysis results, diatoms more reliably indicated a gradient of pollution than macroinvertebrates. However, both organism groups equally discriminated the two relatively unimpacted upstream sites from all other impacted sites. As diatoms are immobile and ubiquitous (i.e., at least a few can be found under almost any condition), they are good indicators of pollution levels among heavily impacted sites where macroinvertebrates are completely absent or less diverse. Therefore, diatoms are the powerful bioindicators for monitoring urban-impacted and seriously stressed rivers and to examine pollution gradients and impacts of specific pollution sources.  相似文献   

18.
An investigation was carried out during the rainy period in six semi-intensive production fish ponds in which water flowed from one pond to another without undergoing any treatment. Eight sampling sites were assigned at pond outlets during the rainy period (December-February). Lowest and highest physical and chemical parameters of water occurred in pond P1 (a site near the springs) and in pond P4 (a critical site that received allochthonous material from the other ponds and also from frog culture ponds), respectively. Pond sequential layout caused concentration of nutrients, chlorophyll-a and conductivity. Seasonal rains increased the water flow in the ponds and, consequently, silted more particles and other dissolved material from one fish pond to another. Silting increased limnological variables from P3 to P6. Although results suggest that during the period under analysis, rainfall affected positively the ponds' water quality and since the analyzed systems have been aligned in a sequential layout with constant water flow from fish ponds and parallel tanks without any previous treatment, care has to be taken so that an increase in rain-induced water flow does not have a contrary effect in the fish ponds investigated.  相似文献   

19.
20.
The aim of our study was to assess the water quality of the upper Moselle river by using biological indices. Simultaneous physico-chemical surveys were also undertaken from May 1999 to April 2000. Twelve sampling sites were selected in order to provide a wide range of potential pollution. Chemical analysis did not reveal any major problem of pollution. However a lower water quality resulting from domestic pollution was established for some sampling sites. A biological monitoring combining both macroinvertebrates and macrophytes was performed. Biological indices based on plant community structure and macrophyte composition were not pertinent tools, whereas simple indices based on taxonomic richness of particular groups of macroinvertebrates were strongly correlated with several chemical parameters, showing that such simple biological variables should represent powerful indicators of ecosystem degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号