首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Cancer is one of the most complex dynamic human disease. Despite rapid advances in the fields of molecular and cell biology, it is still widely debated as to how neoplastic cells progress through carcinogenesis and acquire their metastatic ability. The need to find a new way of observing anatomical entities and their underlying processes, and measuring the changes they undergo, prompted us to investigate the Theory of Complexity, and to apply its principles to human cancer. Viewing a neoplasm as a system that is complex in time and space it is likely to reveal more about its behavioral characteristics, and this manner of thinking may help to clarify concepts, interpret experimental data, indicate specific experiments and categorize the rich body of knowledge on the basis of the similarities and/or shared behaviors of very different tumors.  相似文献   

4.
5.
Modeling interactions between fungi and their hosts at the systems level requires a molecular understanding both of how the host orchestrates immune surveillance and tolerance, and how this activation, in turn, affects fungal adaptation and survival. The transition from the commensal to pathogenic state, and the co-evolution of fungal strains within their hosts, necessitates the molecular dissection of fungal traits responsible for these interactions. There has been a dramatic increase in publically available genome-wide resources addressing fungal pathophysiology and host-fungal immunology. The integration of these existing data and emerging large-scale technologies addressing host-pathogen interactions requires novel tools to connect genome-wide data sets and theoretical approaches with experimental validation so as to identify inherent and emerging properties of host-pathogen relationships and to obtain a holistic view of infectious processes. If successful, a better understanding of the immune response in health and microbial diseases will eventually emerge and pave the way for improved therapies.  相似文献   

6.
7.
Prions, the agents responsible for transmissible spongiform encephalopathies, are infectious proteins consisting primarily of scrapie prion protein (PrP(Sc)), a misfolded, β-sheet enriched and aggregated form of the host-encoded cellular prion protein (PrP(C)). Their propagation is based on an autocatalytic PrP conversion process. Despite the lack of a nucleic acid genome, different prion strains have been isolated from animal diseases. Increasing evidence supports the view that strain-specific properties may be enciphered within conformational variations of PrP(Sc). In humans, sporadic Creutzfeldt-Jakob disease (sCJD) is the most frequent form of prion diseases and has demonstrated a wide phenotypic and molecular spectrum. In contrast, variant Creutzfeldt-Jakob disease (vCJD), which results from oral exposure to the agent of bovine spongiform encephalopathy, is a highly stereotyped disease, that, until now, has only occurred in patients who are methionine homozygous at codon 129 of the PrP gene. Recent research has provided consistent evidence of strain diversity in sCJD and also, unexpectedly enough, in vCJD. Here, we discuss the puzzling biochemical/pathological diversity of human prion disorders and the relationship of that diversity to the biological properties of the agent as demonstrated by strain typing in experimental models.  相似文献   

8.
In this work we attempt to analyze the coupling between the dynamics of biochemical reactions (especially chaotic dynamics), and the geometry of cytoarchitecture (especially fractal ultrastructure), because of its importance and consequences for the ultradian dynamic behaviour of cells. Fractal geometry in intracellular macromolecular assemblies suggests that chaotic dynamics occur during their organization. Non-linear interactions in and between spatial and temporal domains and over wide ranges of scales underlie the emergent properties of complex biological systems.  相似文献   

9.
What differentiates the living from the nonliving? What is life? These are perennial questions that have occupied minds since the beginning of cultures. The search for a clear demarcation between animate and inanimate is a reflection of the human tendency to create borders, not only physical but also conceptual. It is obvious that what we call a living creature, either bacteria or organism, has distinct properties from those of the normally called nonliving. However, searching beyond dichotomies and from a global, more abstract, perspective on natural laws, a clear partition of matter into animate and inanimate becomes fuzzy. Based on concepts from a variety of fields of research, the emerging notion is that common principles of biological and nonbiological organization indicate that natural phenomena arise and evolve from a central theme captured by the process of information exchange. Thus, a relatively simple universal logic that rules the evolution of natural phenomena can be unveiled from the apparent complexity of the natural world.  相似文献   

10.
11.
12.
How to explore protein sequence space efficiently and how to generate high-quality mutant libraries that allow to identify improved variants with current screening technologies are key questions for any directed protein evolution experiment. High-quality mutant libraries can be generated through improved random mutagenesis methodologies and by restricting diversity generation through computational methods to residues which have high success probabilities. Advances in mutant library design and computational tools to focus diversity generation are summarized in this minireview and discussed from an experimentalist point of view in the context of directed protein evolution.  相似文献   

13.
14.
15.
1. The rate of electron transport from H2O to silicomolybdate in the presence of 3-(3-4-dichlorophenyl)-1,1-dimethylurea (diuron) (which involves the oxygen-evolving enzyme, the photochemistry of photosystem 2 and the primary electron acceptor of photosystem 2) is controlled by internal pH. This is based on the shift of the pH profile of the rate of electron transport upon addition of uncouplers, or by using EDTA-treated chloroplasts. Both stimulation and inhibition of electron transport by addition of uncouplers (depending on external pH) could be observed. These effects are obtained in the diuron-insensitive photoreductions of either silicomolybdate or ferricyanide. These experiments provide strong evidence that a proton translocating site exists in the sequence of the electron transport H2O leads to Q (the primary acceptor of photosystem 2). 2. The photoreduction of silicomolybdate in the presence of diuron causes the formation of delta pH. The value of delta pH depends on the external pH and its maximal value was shown to be 2.4. The calculated internal pH at different external pH values was found to be rather constant, namely between 5.1 -- 5.2. 3. Electron transport from H2O to silicomolybdate (in the presence of diuron) does not support ATP formation. It is suggested that this is due to the fact that the delta pH formed is below the "threshold" delta pH required for the synthesis of ATP. By adding an additional source of energy in the form of a dark diffusion potential created in the presence of K+ and valinomycin, significant amounts of ATP are formed in this system.  相似文献   

16.
17.
Using indirect immunofluorescence we have examined the effects of reagents which inhibit the function of ras-related rab small GTP-binding proteins and heterotrimeric G alpha beta gamma proteins in ER to Golgi transport. Export from the ER was inhibited by an antibody towards rab1B and an NH2-terminal peptide which inhibits ARF function (Balch, W. E., R. A. Kahn, and R. Schwaninger. 1992. J. Biol. Chem. 267:13053-13061), suggesting that both of these small GTP-binding proteins are essential for the transport vesicle formation. Export from the ER was also potently inhibited by mastoparan, a peptide which mimics G protein binding regions of seven transmembrane spanning receptors activating and uncoupling heterotrimeric G proteins from their cognate receptors. Consistent with this result, purified beta gamma subunits inhibited the export of VSV-G from the ER suggesting an initial event in transport vesicle assembly was regulated by a heterotrimeric G protein. In contrast, incubation in the presence of GTP gamma S or AIF(3-5) resulted in the accumulation of transported protein in different populations of punctate pre-Golgi intermediates distributed throughout the cytoplasm of the cell. Finally, a peptide which is believed to antagonize the interaction of rab proteins with putative downstream effector molecules inhibited transport at a later step preceding delivery to the cis Golgi compartment, similar to the site of accumulation of transported protein in the absence of NSF or calcium (Plutner, H., H. W. Davidson, J. Saraste, and W. E. Balch. 1992. J. Cell Biol. 119:1097-1116). These results are consistent with the hypothesis that multiple GTP-binding proteins including a heterotrimeric G protein(s), ARF and rab1 differentially regulate steps in the transport of protein between early compartments of the secretory pathway. The concept that G protein-coupled receptors gate the export of protein from the ER is discussed.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号