首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zahn K  Inui M  Yukawa H 《Nucleic acids research》2000,28(23):4623-4633
Widespread occurrence of a separate small RNA derived from the 5'-end of 23S rRNA and of an intervening sequence (IVS) which separates this domain from the main segment of 23S rRNA in the alpha-proteobacteria implies that processing reactions which act to excise the IVS are also maintained in this group. We previously characterized the first example of processing of this IVS in Rhodopseudomonas palustris, which is classified with the Bradyrhizobia In this case, IVS excision occurs by a multistep process and RNase III appears to act at an early step. Here, we characterize in vivo and in vitro IVS processing in two other related, but phenotypically distinct, Bradyrhizobia We also examine in vivo and in vitro processing of rRNA precursors from a more distantly related alpha-proteobacterium, Rhodobacter sphaeroides which produces a separate 5' 23S rRNA domain but has different sequences in the 5' 23S rRNA IVS. The details of the in vivo processing of all of the Bradyrhizobial rRNAs closely resemble the R. palustris example and in vitro studies suggest that all of the Bradyrhizobia utilize RNase III in the first step of IVS cleavage. Remarkably, in vivo and in vitro studies with R.sphaeroides indicate that initial IVS cleavage uses a different mechanism. While the mechanism of IVS cleavage differs among these alpha-proteobacteria, in all of these cases the limits of the internal segments processed in vivo are almost identical and occur far beyond the initial cleavage sites within the IVSs. We propose that these bacteria possess common secondary maturation pathways which enable them to generate similarly processed 23S rRNA 5'- and 3'-ends.  相似文献   

2.
3.
4.
5.
6.
Rrp5p is the only ribosomal RNA processing trans-acting factor that is required for the synthesis of both 18S and 5.8S rRNAs in Saccharomyces cerevisiae. Mutational analyses have characterized modified forms of Rrp5p that either affect formation of 18S rRNA by inhibiting cleavage at sites A0/A1/A2, or synthesis of 5.8S rRNA by inhibiting cleavage at site A3. Here, we examine the rRNA maturation process associated with a RRP5 bipartite allele that codes for two noncontiguous parts of the protein. This slow-growing bipartite mutant has a unique rRNA-processing phenotype that proceeds without endonucleolytic cleavage at site A2. In wild-type cells, the A2 cleavage takes place on the 32S pre-rRNA and is responsible for the formation of 20S and 27SA2 species, the precursors of mature 18S and 5.8S/25S rRNAs, respectively. In the bipartite strain, such precursors were not detectable as judged by Northern analysis or in vivo labeling. They were replaced by the aberrant 21S species and the bypassing 27SA3 precursor, both descended from direct cleavage of 32S pre-rRNA at site A3, which provides an alternative rRNA maturation pathway in this strain. The 21S pre-rRNA is the sole detectable and most likely available precursor of 18S rRNA in this particular strain, indicating that 18S rRNA can be directly produced from 21S. Furthermore, 21S species were found associated with 43S preribosomal particles as similarly observed for the 20S pre-rRNA in the wild-type cells.  相似文献   

7.
8.
9.
The primary and secondary structure of yeast 26S rRNA.   总被引:70,自引:41,他引:29       下载免费PDF全文
We present the sequence of the 26S rRNA of the yeast Saccharomyces carlsbergensis as inferred from the gene sequence. The molecule is 3393 nucleotides long and consists of 48% G+C; 30 of the 43 methyl groups can be located in the sequence. Starting from the recently proposed structure of E. coli 23S rRNA (see ref. 25) we constructed a secondary structure model for yeast 26S rRNA. This structure is composed of 7 domains closed by long-range base pairings as n the bacterial counterpart. Most domains show considerable conservation of the overall structure; unpaired regions show extended sequence homology and the base-paired regions contain many compensating base pair changes. The extra length of the yeast molecule is due to a number of insertions in most of the domains, particularly in domain II. Domain VI, which is extremely conserved, is probably part of the ribosomal A site. alpha-Sarcin, which apparently inhibits the EF-1 dependent binding of aminoacyl-tRNA, causes a cleavage between position 3025 and 3026 in a conserved loop structure, just outside domain VI. Nearly all of the located methyl groups, like in E. coli, are present in domain II, V and VI and clustered to a certain extent mainly in regions with a strongly conserved primary structure. The only three methyl groups of 26S rRNA which are introduced relatively late during the processing are found in single stranded loops in domain VI very close to positions which have been shown in E. coli 23S rRNA to be at the interface of the ribosome.  相似文献   

10.
11.
12.
13.
14.
15.
Rische T  Klug G 《RNA biology》2012,9(3):343-350
The essential processing of ribosomal rRNA precursors requires concerted and sequential cleavages by different endo- and exoribonucleases. Despite long lasting investigations of these processes the exact order of steps remained elusive. Many bacteria perform additional rRNA processing steps by removing intervening sequences within the 23S rRNA. This leads to disintegration of the 23S rRNA and discontinuously assembled fragments within the ribosomes. The maturation of these fragments also requires successive cleavage events by different RNases. Our study reveals that the 5'-to-3' exoribonuclease RNase J is responsible for the final 5'-end maturation of all three 23S rRNA fragments in the α-proteobacterium Rhodobacter sphaeroides. Additionally the results show that 5'- and 3'-processing steps are closely coupled: mature 5'-ends are a strict prerequisite for the final 3'-trimming of the 23S rRNA fragments.  相似文献   

16.
17.
J Venema  Y Henry    D Tollervey 《The EMBO journal》1995,14(19):4883-4892
Three of the four eukaryotic ribosomal RNA molecules (18S, 5.8S and 25-28S rRNA) are transcribed as a single precursor, which is subsequently processed into the mature species by a complex series of cleavage and modification reactions. Early cleavage at site A1 generates the mature 5'-end of 18S rRNA. Mutational analyses have identified a number of upstream regions in the 5' external transcribed spacer (5' ETS), including a U3 binding site, which are required in cis for processing at A1. Nothing is known, however, about the requirement for cis-acting elements which define the position of the 5'-end of the 18S rRNA or of any other eukaryotic rRNA. We have introduced mutations around A1 and analyzed them in vivo in a genetic background where the mutant pre-rRNA is the only species synthesized. The results indicate that the mature 5'-end of 18S rRNA in yeast is identified by two partially independent recognition systems, both defining the same cleavage site. One mechanism identifies the site of cleavage at A1 in a sequence-specific manner involving recognition of phylogenetically conserved nucleotides immediately upstream of A1 in the 5' ETS. The second mechanism specifies the 5'-end of 18S rRNA by spacing the A1 cleavage at a fixed distance of 3 nt from the 5' stem-loop/pseudoknot structure located within the mature sequence. The 5' product of the A1 processing reaction can also be identified, showing that, in contrast to yeast 5.8S rRNA, the 5'-end of 18S rRNA is generated by endonucleolytic cleavage.  相似文献   

18.
In yeast, the 3' end of mature 18S rRNA is generated by endonucleolytic cleavage of the 20S precursor at site D. Available data indicate that the major cis-acting elements required for this processing step are located in relatively close proximity to the cleavage site. To identify these elements, we have studied the effect of mutations in the mature 18S and ITS1 sequences neighboring site D on pre-rRNA processing in vivo. Using clustered point mutations, we found that alterations in the sequence spanning site D from position -5 in 18S rRNA to +6 in ITS1 reduced the efficiency of processing at this site to different extents as demonstrated by the lower level of the mature 18S rRNA and the increase in 20S pre-rRNA in cells expressing only mutant rDNA units. More detailed analysis revealed an important role for the residue located 2 nt upstream from site D (position -2), whereas sequence changes at position -1, +1, and +2 relative to site D had no effect. The data further demonstrate that the proposed base pairing between the 3' end of 18S rRNA and the 5' end of ITS1 is not important for efficient and accurate processing at site D, nor for the formation of functional 40S ribosomal subunits. These results were confirmed by analyzing the accumulation of the D-A2 fragment derived from the mutant 20S pre-rRNA in cells that lack the Xrn1p exonuclease responsible for its degradation. The latter results also showed that the accuracy of cleavage was affected by altering the spacer sequence directly downstream of site D but not by mutations in the 18S rRNA sequence preceding this site.  相似文献   

19.
20.
The endonuclease cleavage of 41 S pre-rRNA to yield 32 S and 21 S pre-rRNA constitutes a major early step in the processing of pre-rRNA in rat liver. The 5'-terminus of 32 S pre-rRNA and the 3'-terminus of 21 S pre-rRNA were precisely located within the rDNA sequence by S1 nuclease protection mapping and use of appropriate rDNA restriction fragments. The 5'-terminus of 12 S pre-rRNA, an initial product of 32 S pre-rRNA processing, was also mapped within the rDNA sequence. The 5'-termini of 32 S and 12 S pre-rRNA coincide and map within a 14-residue T-tract (non-coding strand) at 161-163 bp upstream from the 5'-end of the 5.8 S rRNA gene. The 3'-terminus of 21 S pre-rRNA maps within the same T-tract. These results show that the endonuclease cleavage occurs within a U-tract in the internal transcribed spacer 1 sequence of 41 S pre-rRNA. The homogeneity of the 5'- or 3'-termini of 32 S, 12 S and 21 S pre-rRNA indicates also that the terminal processing of these molecules, if any, is markedly slower. The coincidence in the location of 32 S and 12 S pre-rRNA 5'-termini shows further that the endonuclease cleavage of 32 S pre-rRNA precedes the removal of its 5'-terminal segment to yield 5.8 S rRNA. The absence in the whole pre-rRNA internal transcribed spacer of sequences complementary to the target U-tract suggests that the endonuclease cleavage, generating 32 S and 21 S pre-rRNA, occurs in a single-stranded loop of U-residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号