首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The identification of tumor antigens capable of eliciting an immune response in vivo may be an effective method to identify therapeutic cancer targets. We have developed a method to identify such antigens using frozen tumor-draining lymph node samples from breast cancer patients. Immune responses in tumor-draining lymph nodes were identified by immunostaining lymph node sections for B-cell markers (CD20&CD23) and Ki67 which revealed cell proliferation in germinal center zones. Antigen-dependent somatic hypermutation (SH) and clonal expansion (CE) were present in heavy chain variable (VH) domain cDNA clones obtained from these germinal centers, but not from Ki67 negative germinal centers. Recombinant VH single-domain antibodies were used to screen tumor proteins and affinity select potential tumor antigens. Neuroplastin (NPTN) was identified as a candidate breast tumor antigen using proteomic identification of affinity selected tumor proteins with a recombinant VH single chain antibody. NPTN was found to be highly expressed in approximately 20% of invasive breast carcinomas and 50% of breast carcinomas with distal metastasis using a breast cancer tissue array. Additionally, NPTN over-expression in a breast cancer cell line resulted in a significant increase in tumor growth and angiogenesis in vivo which was related to increased VEGF production in the transfected cells. These results validate NPTN as a tumor-associated antigen which could promote breast tumor growth and metastasis if aberrantly expressed. These studies also demonstrate that humoral immune responses in tumor-draining lymph nodes can provide antibody reagents useful in identifying tumor antigens with applications for biomarker screening, diagnostics and therapeutic interventions.  相似文献   

2.
Tumor-associated carbohydrate (TAC) antigens are important targets in cancer vaccine efforts. Carbohydrates are, however, frequently poor immunogens, in that they are T-cell-independent antigens. Molecular mimicry of TAC by peptides is an alternative approach to generating anti-carbohydrate immune responses. Here we demonstrate that peptide mimotopes can elicit antibody responses that cross-react with representative human TAC antigens. Primary immunization with such a multiple antigenic peptide, along with QS-21 as adjuvant, elicits cytotoxic antibodies reactive with naturally occurring forms of TAC expressed on tumor cells, and vaccination of mice with peptide mimotopes reduced tumor growth and prolonged host survival in a murine tumor model.  相似文献   

3.
We recently demonstrated that Venezuelan equine encephalitis virus-based replicon particle (VRPs) encoding tumor antigens could break tolerance in the immunomodulatory environment of advanced cancer. We hypothesized that local injection of VRP-expressing interleukin-12 (IL-12) at the site of injections of VRP-based cancer vaccines would enhance the tumor-antigen-specific T cell and antibody responses and antitumor efficacy. Mice were immunized with VRP encoding the human tumor-associated antigen, carcinoembryonic antigen (CEA) (VRP-CEA(6D)), and VRP-IL-12 was also administered at the same site or at a distant location. CEA-specific T cell and antibody responses were measured. To determine antitumor activity, mice were implanted with MC38-CEA-2 cells and immunized with VRP-CEA with and without VRP-IL-12, and tumor growth and mouse survival were measured. VRP-IL-12 greatly enhanced CEA-specific T cell and antibody responses when combined with VRP-CEA(6D) vaccination. VRP-IL-12 was superior to IL-12 protein at enhancing immune responses. Vaccination with VRP-CEA(6D) plus VRP-IL-12 was superior to VRP-CEA(6D) or VRP-IL-12 alone in inducing antitumor activity and prolonging survival in tumor-bearing mice. Importantly, local injection of VRP-IL-12 at the VRP-CEA(6D) injection site provided more potent activation of CEA-specific immune responses than that of VRP-IL-12 injected at a distant site from the VRP-CEA injections. Together, this study shows that VRP-IL-12 enhances vaccination with VRP-CEA(6D) and was more effective at activating CEA-specific T cell responses when locally expressed at the vaccine site. Clinical trials evaluating the adjuvant effect of VRP-IL-12 at enhancing the immunogenicity of cancer vaccines are warranted.  相似文献   

4.
There is strong preclinical evidence that cancer, including breast cancer, undergoes immune surveillance. This continual monitoring, by both the innate and the adaptive immune systems, recognizes changes in protein expression, mutation, folding, glycosylation, and degradation. Local immune responses to tumor antigens are amplified in draining lymph nodes, and then enter the systemic circulation. The antibody response to tumor antigens, such as p53 protein, are robust, stable, and easily detected in serum; may exist in greater concentrations than their cognate antigens; and are potential highly specific biomarkers for cancer. However, antibodies have limited sensitivities as single analytes, and differences in protein purification and assay characteristics have limited their clinical application. For example, p53 autoantibodies in the sera are highly specific for cancer patients, but are only detected in the sera of 10-20% of patients with breast cancer. Detection of p53 autoantibodies is dependent on tumor burden, p53 mutation, rapidly decreases with effective therapy, but is relatively independent of breast cancer subtype. Although antibodies to hundreds of other tumor antigens have been identified in the sera of breast cancer patients, very little is known about the specificity and clinical impact of the antibody immune repertoire to breast cancer. Recent advances in proteomic technologies have the potential for rapid identification of immune response signatures for breast cancer diagnosis and monitoring. We have adapted programmable protein microarrays for the specific detection of autoantibodies in breast cancer. Here, we present the first demonstration of the application of programmable protein microarray ELISAs for the rapid identification of breast cancer autoantibodies.  相似文献   

5.
Numerous phase I and II clinical trials testing the safety and immunogenicity of various peptide vaccine formulations based on CTL-defined tumor antigens in cancer patients have been reported during the last 7 years. While specific T-cell responses can be detected in a variable fraction of immunized patients, an even smaller but significant fraction of these patients have objective tumor responses. Efficient therapeutic vaccination should aim at boosting naturally occurring antitumor T- and B-cell responses and at sustaining a large number of tumor antigen specific and fully functional effector T cells at tumor sites. Recent progress in our ability to quantitatively and qualitatively monitor tumor antigen specific CD8 T-cell responses will greatly help in making rapid progress in this field.This work was presented at the first Cancer Immunology and Immunotherapy Summer School, 8–13 September 2003, Ionian Village, Bartholomeio, Peloponnese, Greece.  相似文献   

6.
This review summarizes studies on humoral immune responses against tumor-associated antigens (TAAs) with a focus on antibody frequencies and the potential diagnostic, prognostic, and etiologic relevance of antibodies against TAAs. We performed a systematic literature search in Medline and identified 3,619 articles on humoral immune responses and TAAs. In 145 studies, meeting the inclusion criteria, humoral immune responses in cancer patients have been analyzed against over 100 different TAAs. The most frequently analyzed antigens were p53, MUC1, NY-ESO-1, c-myc, survivin, p62, cyclin B1, and Her2/neu. Antibodies against these TAAs were detected in 0–69% (median 14%) of analyzed tumor patients. Antibody frequencies were generally very low in healthy individuals, with the exception of few TAAs, especially MUC1. For several TAAs, including p53, Her2/neu, and NY-ESO-1, higher antibody frequencies were reported when tumors expressed the respective TAA. Antibodies against MUC1 were associated with a favorable prognosis while antibodies against p53 were associated with poor disease outcome. These data suggest different functional roles of endogenous antibodies against TAAs. Although data on prediagnostic antibody levels are scarce and antibody frequencies for most TAAs are at levels precluding use in diagnostic assays for cancer early detection, there is some promising data on achieving higher sensitivity for cancer detection using panels of TAAs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
The ability of lymph node cells from mice bearing the BCL1 tumor to respond in vitro to mitogens, allogeneic cells, and both TI and TD antigens was investigated. The lymph nodes of such mice are not invaded with tumor cells and contain normal numbers of T and B cells. Nevertheless, at the peak of tumor burden in the spleen and blood (approximately 8 to 12 wk after injection with tumor cells), the lymph node cells from the tumor-bearing mice display markedly decreased responsiveness both to allogeneic cells and to antigens. In addition, small numbers of lymph node cells from the tumor-bearing mice suppress primary antibody responses of normal lymph node cells. This nonspecific suppression of antibody responses is mediated by a G-10 Sephadex adherent, non-T, non-B cell present in the nodes of the tumor-bearing mice. Since the BCL1 tumor model is in many respects similar to the prolymphocytic type of human chronic lymphocytic leukemia, the present results may be helpful in elucidating the mechanisms underlying the in vivo immunosuppression associated with lymphocytic neoplasms in humans.  相似文献   

8.
Modern anti-HER2 antibody therapy tends to exploit a panel of different antibodies against different epitopes on the antigen. For this aim, nanobodies are very striking targeting agents and can be easily produced against any cell-specific membrane antigen. The oligoclonal nanobodies can be used to block more than one functional epitope on a target antigen and inhibit the generation of escape variants associated with cancer therapy. In this study, 12 nanobody clones selected from an immune camel library were examined for their ability to differ between tumor markers. These oligoclonal nanobodies targeted breast cancer cells better than each individual nanobody. In epitope mapping, several nanobodies overlapped in the epitope recognized by trastuzumab and some of the non-overlapping nanobodies could affect the binding of trastuzumab to HER2. This study demonstrates that the oligoclonal nanobodies are potential therapeutic tools that can be used instead of, or in combination with trastuzumab to assess tumor viability during treatment.  相似文献   

9.
The low immunogenicity of malignant cells is one of the causes responsible for the lack of antitumor immune responses. Thus, development of new therapeutic strategies aimed at enhancing presentation of tumor antigens to T cells is a main goal of cancer immunotherapy. With this aim, we studied the efficacy of administering adjuvants poly(I:C) and agonistic anti-CD40 antibody plus a tumor antigen. Joint intravenous immunization with these adjuvants and a model tumor antigen (ovalbumin) was able to synergistically induce potent and long lasting antitumor T-cell responses. These responses protected against challenge with E.G7–OVA tumor cells in prophylactic short- and long-term vaccination. In a therapeutic setting, repeated intratumor administration of adjuvants plus antigen was able to reject established tumors in all treated animals, leading in some cases to the rejection of both locally treated and untreated tumors. Antitumor immune responses induced by these protocols were mediated not only by T-cells but also by NK cells. In conclusion, combined administration of adjuvants poly(I:C) and anti-CD40 plus a tumor antigen is an efficient strategy for prophylactic and therapeutic antitumor vaccination.  相似文献   

10.
Over the last few years, anticancer immunotherapy has emerged as a new exciting area for controlling tumors. In particular, vaccination using synthetic tumor-associated antigens (TAA), such as carbohydrate antigens hold promise for generating a specific antitumor response by targeting the immune system to cancer cells. However, development of synthetic vaccines for human use is hampered by the extreme polymorphism of human leukocyte-associated antigens (HLA). In order to stimulate a T-cell dependent anticarbohydrate response, and to bypass the HLA polymorphism of the human population, we designed and synthesized a glycopeptide vaccine containing a cluster of a carbohydrate TAA B-cell epitope (Tn antigen: alpha-GalNAc-Ser) covalently linked to peptides corresponding to the Pan DR 'universal' T-helper epitope (PADRE) and to a cytotoxic T lymphocyte (CTL) epitope from the carcinoembryonic antigen (CEA). The immunogenicity of the construct was evaluated in outbred mice as well as in HLA transgenic mice (HLA-DR1, and HLA-DR4). A strong T-cell dependent antibody response specific for the Tn antigen was elicited in both outbred and HLA transgenic mice. The antibodies induced by the glycopeptide construct efficiently recognized a human tumor cell line underlying the biological relevance of the response. The rational design and synthesis of the glycopeptide construct presented herein, together with its efficacy to induce antibodies specific for native tumor carbohydrate antigens, demonstrate the potential of a such synthetic molecule as an anticancer vaccine candidate for human use.  相似文献   

11.
A major goal of immunotherapy for cancer is the activation of T cell responses against tumor-associated antigens (TAAs). One important strategy for improving antitumor immunity is vaccination with peptide variants of TAAs. Understanding the mechanisms underlying the expansion of T cells that respond to the native tumor antigen is an important step in developing effective peptide-variant vaccines. Using an immunogenic mouse colon cancer model, we compare the binding properties and the TCR genes expressed by T cells elicited by peptide variants that elicit variable antitumor immunity directly ex vivo. The steady-state affinity of the natural tumor antigen for the T cells responding to effective peptide vaccines was higher relative to ineffective peptides, consistent with their improved function. Ex vivo analysis showed that T cells responding to the effective peptides expressed a CDR3β motif, which was also shared by T cells responding to the natural antigen and not those responding to the less effective peptide vaccines. Importantly, these data demonstrate that peptide vaccines can expand T cells that naturally respond to tumor antigens, resulting in more effective antitumor immunity. Future immunotherapies may require similar stringent analysis of the responding T cells to select optimal peptides as vaccine candidates.  相似文献   

12.
In human pancreatic adenocarcinoma, alterations of glycosylation processes leads to the expression of tumor-associated carbohydrate antigens, representing potential targets for cancer immunotherapy. Among these pancreatic tumor-associated carbohydrate antigens, the J28 glycotope located within the O-glycosylated mucin-like C-terminal domain of the fetoacinar pancreatic protein (FAPP) and expressed at the surface of human tumoral tissues, can be a good target for anticancer therapeutic vaccines. However, the oncodevelopmental self character of the J28 glycotope associated with the low immunogenicity of tumor-associated carbohydrate antigens may be a major obstacle to effective anti-tumor vaccine therapy. In this study, we have investigated a method to increase the immunogenicity of the recombinant pancreatic oncofetal J28 glycotope by glycoengineering Galalpha1,3Galss1,4GlcNAc-R (alphaGal epitope) which may be recognized by natural anti-alphaGal antibody present in humans. For this purpose, we have developed a stable Chinese hamster ovary cell clone expressing the alphaGal epitope by transfecting the cDNA encoding the alpha1,3galactosyltransferase. These cells have been previously equipped to produce the recombinant O-glycosylated C-terminal domain of FAPP carrying the J28 glycotope. As a consequence, the C-terminal domain of FAPP produced by these cells carries the alphaGal epitope on oligosaccharide structures associated with the J28 glycotope. Furthermore, we show that this recombinant "alpha1,3galactosyl and J28 glycotope" may not only be targeted by human natural anti-alphaGal antibodies but also by the mAbJ28, suggesting that the J28 glycotope remains accessible to the immune system as vaccinating agent. This approach may be used for many identified tumor-associated carbohydrate antigens which can be glycoengineered to carry a alphaGal epitope to increase their immunogenicity and to develop therapeutic vaccines.  相似文献   

13.
Recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or TRAIL-receptor agonistic monoclonal antibodies promote apoptosis in most cancer cells, and the differential expression of TRAIL-R2 between tumor and normal tissues allows its exploitation as a tumor-associated antigen. The use of these antibodies as anticancer agents has been extensively studied, but the results of clinical trials were disappointing. The observed lack of anticancer activity could be attributed to intrinsic or acquired resistance of tumor cells to this type of treatment. A possible strategy to circumvent drug resistance would be to strike tumor cells with a second modality based on a different mechanism of action. We therefore set out to generate and optimize a bispecific antibody targeting TRAIL-R2 and CD3. After the construction of different bispecific antibodies in tandem-scFv or single-chain diabody formats to reduce possible immunogenicity, we selected a humanized bispecific antibody with very low aggregates and long-term high stability and functionality. This antibody triggered TRAIL-R2 in an agonistic manner and its anticancer activity proved dramatically potentiated by the redirection of cytotoxic T cells against both sensitive and resistant melanoma cells. The results of our study show that combining the TRAIL-based antitumor strategy with an immunotherapeutic approach in a single molecule could be an effective addition to the anticancer armamentarium.  相似文献   

14.
Conventional treatment approaches for malignant tumors are highly invasive and sometimes have only a palliative effect. Therefore, there is an increasing demand to develop novel, more efficient treatment options. Increased efforts have been made to apply immunomodulatory strategies in antitumor treatment. In recent years, immunizations with naked plasmid DNA encoding tumor-associated antigens have revealed a number of advantages. By DNA vaccination, antigen-specific cellular as well as humoral immune responses can be generated. The induction of specific immune responses directed against antigens expressed in tumor cells and displayed e.g., by MHC class I complexes can inhibit tumor growth and lead to tumor rejection. The improvement of vaccine efficacy has become a critical goal in the development of DNA vaccination as antitumor therapy. The use of different DNA delivery techniques and coadministration of adjuvants including cytokine genes may influence the pattern of specific immune responses induced. This brief review describes recent developments to optimize DNA vaccination against tumor-associated antigens. The prerequisite for a successful antitumor vaccination is breaking tolerance to tumor-associated antigens, which represent "self-antigens." Currently, immunization with xenogeneic DNA to induce immune responses against self-molecules is under intensive investigation. Tumor cells can develop immune escape mechanisms by generation of antigen loss variants, therefore, it may be necessary that DNA vaccines contain more than one tumor antigen. Polyimmunization with a mixture of tumor-associated antigen genes may have a synergistic effect in tumor treatment. The identification of tumor antigens that may serve as targets for DNA immunization has proceeded rapidly. Preclinical studies in animal models are promising that DNA immunization is a potent strategy for mediating antitumor effects in vivo. Thus, DNA vaccines may offer a novel treatment for tumor patients. DNA vaccines may also be useful in the prevention of tumors with genetic predisposition. By DNA vaccination preventing infections, the development of viral-induced tumors may be avoided.  相似文献   

15.
Purpose: Immunologic-based cancer treatment modalities represent an active area of investigation. Included in these strategies are passive administration of monoclonal antibodies which recognize tumor-associated antigens and active vaccination with identified tumor antigens. However, several problems associated with these types of treatment strategies have been identified. Methods: In this report, we address certain issues by employing a murine model for experimental pulmonary metastasis and a tumor antigen vaccination strategy that induces complete tumor immunity in this system. Utilizing this model, we attempt to address issues related to unresponsiveness to tumor antigen immunization induced by passive administration of a rat monoclonal anti-CD4 and the induction of anti-idiotype responses to a passively administered monoclonal antibody and the effects on the induction of tumor immunity. Results: The results presented indicate that passive administration of rat monoclonal anti-CD4 exhibits immunosuppressive effects that inhibit the production of antibodies to the tumor antigen immunization and abolishes tumor immunity. Repeated administration of the rat monoclonal anti-CD4 results in an anti-idiotype response that can abrogate unresponsiveness to tumor antigen immunization and promote systemic tumor immunity. Conclusions: The data examine a number of potential problems associated with immunologic-based treatments for cancer. These problems include the potential for tolerance to the tumor antigen and establishing an immunocompromised state where immunization with a tumor antigen failed to generate tumor immunity. Approaches to eliminate tolerant T cells by targeting anti-CD4 via anti-idiotype responses that could be generated in vivo without CD4+ T cells allowed for recovery of nontolerant T cells, and an antibody response to the tumor antigen that results in tumor immunity.Abbreviations CTL Cytotoxic T lymphocyte - FITC Fluorescein isothiocyanate - OD Optical density - PBS Phosphate-buffered saline - SV40 Simian virus 40  相似文献   

16.
Cancer vaccines designed to elicit an antibody response that target antigenic sites on a tumor antigen must closely mimic the three-dimensional structure of the corresponding region on the antigen. We have designed a complex immunogen derived from the extracellular domain of human HER-2/neu-(626-649) that represents a three-dimensional epitope. We have successfully introduced two disulfide bonds into this sequence, thereby recapitulating the natural disulfide pairings observed in the native protein. To evaluate the immunogenicity of the doubly cyclized disulfide-linked peptide versus the free uncyclized peptide we examined the induction of antibody responses in both inbred and outbred mice strains, with both constructs eliciting high titered antibodies. The disulfide-paired specific antibodies exhibited enhanced cross-reactivity to HER-2/neu expressed on BT-474 cell line as determined by flow cytometry. The antitumor activities of the disulfidepaired specific antibodies did not improve the in vitro growth inhibition of human breast cancer cells overexpressing HER-2, but showed superior antitumor responses in the context of ADCC and interferon-gamma induction. Inbred mice (FVB/n) vaccinated with the disulfide-paired epitope exhibited a statistically significant reduction in the development of exogenously administered tumors in vivo compared with mice receiving either the free uncyclized or the promiscuous T-cell epitope (MVF) control peptide (p = 0.001). This study demonstrates the feasibility and importance of designing conformational epitopes that mimic the tertiary structure of the native protein for eliciting biologically relevant anti-tumor antibodies. Such approaches are a prerequisite to the design of effective peptide vaccines.  相似文献   

17.

Background

Recombinant monoclonal antibodies have emerged as important tools for cancer therapy. Despite the promise shown by antibody-based therapies, the large molecular size of antibodies limits their ability to efficiently penetrate solid tumors and precludes efficient crossing of the blood-brain-barrier into the central nervous system (CNS). Consequently, poorly vascularized solid tumors and CNS metastases cannot be effectively treated by intravenously-injected antibodies. The inherent tumor-tropic properties of human neural stem cells (NSCs) can potentially be harnessed to overcome these obstacles and significantly improve cancer immunotherapy. Intravenously-delivered NSCs preferentially migrate to primary and metastatic tumor sites within and outside the CNS. Therefore, we hypothesized that NSCs could serve as an ideal cellular delivery platform for targeting antibodies to malignant tumors.

Methods and Findings

As proof-of-concept, we selected Herceptin™ (trastuzumab), a monoclonal antibody widely used to treat HER2-overexpressing breast cancer. HER2 overexpression in breast cancer is highly correlated with CNS metastases, which are inaccessible to trastuzumab therapy. Therefore, NSC-mediated delivery of trastuzumab may improve its therapeutic efficacy. Here we report, for the first time, that human NSCs can be genetically modified to secrete anti-HER2 immunoglobulin molecules. These NSC-secreted antibodies assemble properly, possess tumor cell-binding affinity and specificity, and can effectively inhibit the proliferation of HER2-overexpressing breast cancer cells in vitro. We also demonstrate that immunoglobulin-secreting NSCs exhibit preferential tropism to tumor cells in vivo, and can deliver antibodies to human breast cancer xenografts in mice.

Conclusions

Taken together, these results suggest that NSCs modified to secrete HER2-targeting antibodies constitute a promising novel platform for targeted cancer immunotherapy. Specifically, this NSC-mediated antibody delivery system has the potential to significantly improve clinical outcome for patients with HER2-overexpressing breast cancer.  相似文献   

18.
目的:探讨Fas相关死亡结构域蛋白(Fas-associated death domain protein,FADD)在乳腺癌中表达的临床病理学意义。方法:收集乳腺癌病例及相应的临床资料包括随访资料,应用免疫组织化学技术检测乳腺良性病变,有/无淋巴结转移的乳腺癌及配对淋巴结转移灶中FADD的表达,观察分析FADD表达与乳腺癌患者年龄、肿块大小、临床分期、组织学类型和分级、雌孕激素受体水平等临床病理指标间的关系。结果:免疫组化检测结果显示良性乳腺病变组中FADD的阳性表达率(85.1%,40/47)与无淋巴结转移的乳腺癌组(45.8%,38/83),伴有淋巴结转移的乳腺癌组(67.3%72/107)和淋巴结转移灶(45.8%,49/107)组织中FADD阳性表率均有显著性差异(P值分别0.001,=0.022和0.001);此外,伴有淋巴结转移的乳腺癌组中FADD阳性表达率也均与其它三组中FADD阳性表达率之间具有显著性差异(P值分别为0.003,0.001和0.022)。FADD与患者的确诊年龄(P=0.049)和淋巴结转移有显著性相关(P=0.003),与肿瘤大小、临床分期、组织学类型、组织学分级、雌孕激素受体及cerb B-2的表达情况和月经史无明显相关性(P0.05)。生存分析显示FADD阳性表达的患者较FADD阴性患者的生存期更短。结论:FADD与乳腺癌淋巴结转移和预后有关。  相似文献   

19.
This paper reviews the use of low-dose cyclophosphamide (CY) with active specific immunotherapy in patients with advanced melanoma and other metastatic cancers, and outlines the basic scientific research that supports this use. In various animal models, CY augments delayed-type hypersensitivity responses, increases antibody production, abrogates tolerance, and potentiates antitumor immunity. The mechanism of CY immunopotentiation involves inhibition of a suppressor function, as indicated by extensive work in the MOPC-315 plasmacytoma murine model. Human studies of the immunopotentiating effect of CY have yielded both positive and negative results. Toxicity associated with low-dose CY has been mild in these studies. Results of efficacy have been variable for reasons such as small sample sizes, short follow-up periods, and the weaker immunogenicity of human tumor-associated antigens. Although beneficial clinical outcomes have been observed in historically controlled trials, there are few randomized, controlled trials that evaluate outcome in relation to CY immunopotentiation of active specific immunotherapy. Additional randomized, controlled trials should be done to examine the clinical efficacy of CY immunopotentiation of therapeutic cancer vaccines. Received: 3 April 1998 / Accepted: 6 May 1998  相似文献   

20.
Optimum efficacy of therapeutic cancer vaccines may require combinations that generate effective antitumor immune responses, as well as overcome immune evasion and tolerance mechanisms mediated by progressing tumor. Previous studies showed that IL-13Rα2, a unique tumor-associated Ag, is a promising target for cancer immunotherapy. A targeted cytotoxin composed of IL-13 and mutated Pseudomonas exotoxin induced specific killing of IL-13Rα2(+) tumor cells. When combined with IL-13Rα2 DNA cancer vaccine, surprisingly, it mediated synergistic antitumor effects on tumor growth and metastasis in established murine breast carcinoma and sarcoma tumor models. The mechanism of synergistic activity involved direct killing of tumor cells and cell-mediated immune responses, as well as elimination of myeloid-derived suppressor cells and, consequently, regulatory T cells. These novel results provide a strong rationale for combining immunotoxins with cancer vaccines for the treatment of patients with advanced cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号