首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Dynamin-mediated Internalization of Caveolae   总被引:30,自引:0,他引:30       下载免费PDF全文
The dynamins comprise an expanding family of ubiquitously expressed 100-kD GTPases that have been implicated in severing clathrin-coated pits during receptor-mediated endocytosis. Currently, it is unclear whether the different dynamin isoforms perform redundant functions or participate in distinct endocytic processes. To define the function of dynamin II in mammalian epithelial cells, we have generated and characterized peptide-specific antibodies to domains that either are unique to this isoform or conserved within the dynamin family. When microinjected into cultured hepatocytes these affinity-purified antibodies inhibited clathrin-mediated endocytosis and induced the formation of long plasmalemmal invaginations with attached clathrin-coated pits. In addition, clusters of distinct, nonclathrin-coated, flask-shaped invaginations resembling caveolae accumulated at the plasma membrane of antibody-injected cells. In support of this, caveola-mediated endocytosis of labeled cholera toxin B was inhibited in antibody-injected hepatocytes. Using immunoisolation techniques an anti-dynamin antibody isolated caveolar membranes directly from a hepatocyte postnuclear membrane fraction. Finally, double label immunofluorescence microscopy revealed a striking colocalization between dynamin and the caveolar coat protein caveolin. Thus, functional in vivo studies as well as ultrastructural and biochemical analyses indicate that dynamin mediates both clathrin-dependent endocytosis and the internalization of caveolae in mammalian cells.  相似文献   

2.
Endocytosis has a crucial role in many cellular processes. The best-characterized mechanism for endocytosis involves clathrin-coated pits [1], but evidence has accumulated for additional endocytic pathways in mammalian cells [2]. One such pathway involves caveolae, plasma-membrane invaginations defined by caveolin proteins. Plasma-membrane microdomains referred to as lipid rafts have also been associated with clathrin-independent endocytosis by biochemical and pharmacological criteria [3]. The mechanisms, however, of nonclathrin, noncaveolin endocytosis are not clear [4, 5]. Here we show that coassembly of two similar membrane proteins, flotillin1 and flotillin2 [6-8], is sufficient to generate de novo membrane microdomains with some of the predicted properties of lipid rafts [9]. These microdomains are distinct from caveolin1-positive caveolae, are dynamic, and bud into the cell. Coassembly of flotillin1 and flotillin2 into microdomains induces membrane curvature, the formation of plasma-membrane invaginations morphologically similar to caveolae, and the accumulation of intracellular vesicles. We propose that flotillin proteins are defining structural components of the machinery that mediates a clathrin-independent endocytic pathway. Key attributes of this machinery are the dependence on coassembly of both flotillins and the inference that flotillin microdomains can exist in either flat or invaginated states.  相似文献   

3.
Mammalian cells endocytose a variety of proteins and lipids without utilising clathrin-coated pits. Detailed molecular mechanisms for clathrin-independent endocytosis are unclear. Several markers for this process, including glycosphingolipid-binding bacterial toxin subunits such as cholera toxin B subunit (CTxB), and glycosyl-phosphatidyl-inositol (GPI)-anchored proteins, are found in detergent-resistant membrane fractions (DRMs), or 'lipid rafts'. The Golgi complex constitutes one principal intracellular destination for these markers. Uptake of both CTxB and GPI-anchored proteins may involve caveolae, small invaginations in the plasma membrane (PM). However, the identity of intermediate organelles involved in PM to Golgi trafficking, as well as the function of caveolins, defining protein components of caveolae, are unclear. This paper shows that molecules which partition into DRMs and are endocytosed in a clathrin-independent fashion, accumulate in a discrete population of endosomes en route to the Golgi complex. These endosomes are devoid of markers for classical early and recycling endosomes, but do contain caveolin-1. Caveolin-1-positive endosomes are sites for the sorting of caveolin-1 away from Golgi-bound cargoes, although caveolin-1 itself is unlikely to have a direct function in PM to Golgi transport.  相似文献   

4.
In addition to endocytosing molecules via clathrin-coated pits, cells also internalize membrane and fluid by a clathrin-independent endocytic mechanism. In this article we search for the equivalent of clathrin-coated pits in clathrin-independent endocytosis, and discuss some pitfalls in the interpretation of electron micrographs. We also discuss how the early steps in clathrin-independent endocytosis might be analysed morphologically, and we argue that caveolae are not involved in clathrin-independent endocytosis.  相似文献   

5.
Diphtheria toxin is believed to enter sensitive mammalian cells via receptor-mediated endocytosis from clathrin-coated pits, while ricin can enter via both clathrin-dependent and clathrin-independent endocytosis. The present study has confirmed this by determining the toxin sensitivity of COS-7y cells which were transiently overexpressing atransdominant negative mutant of dynamin, a GTPase required for the budding of clathrin-coated vesicles from the plasma membrane. Cells overexpressing wild-type dynamin showed normal receptor-mediated endocytosis of transferrin and remained sensitive to both diphtheria toxin and ricin. Cells overexpressing a mutant dynamin defective in GTP binding and hydrolysis were unable to endocytose transferrin and were protected against diphtheria toxin, but they remained completely sensitive to ricin intoxication. Treating nontransfected cells or cells overexpressing mutant dynamin with nystatin caused a redistribution of the caveolae membrane marker protein VIP21-caveolin from the cell surface to intracellular locations, but did not affect their sensitivity to ricin. The redistribution of caveolin seen after nystatin treatment may reflect the disappearance of caveolae. If this is the case, caveolae are not responsible for the endocytosis of ricin. An alternative clathrin-independent route may operate for ricin, since cellular uptake, intracellular transport, and translocation into the cytosol remain unaffected when clathrin-dependent endocytosis is effectively blocked.  相似文献   

6.
We examined the effect of a cholesterol derivative, poly (ethylene glycol) cholesteryl ether on the structure/function of clathrin-coated pits and caveolae. Addition of the compound to cultured cells induced progressive smoothening of the surface. Markedly, when the incorporated amount exceeded 10% equivalent of the surface area, fluid pinocytosis, but not endocytosis of transferrin, became inhibited in K562 cells. In A431 cells, both clathrin-independent fluid phase uptake and the internalization of fluorescent cholera-toxin B through caveolae were inhibited with concomitant flattening of caveolae. In contrast, clathrin-mediated internalization of transferrin was not affected until the incorporated poly (ethylene glycol) cholesteryl ether exceeded 20% equivalent of the plasma membrane surface area, at which point opened clathrin-coated pits accumulated. The cells were ruptured upon further addition of poly (ethylene glycol) cholesteryl ether. We propose that the primary reason for the differential effect of poly (ethylene glycol) cholesteryl ether is that the bulk membrane phase and caveolae are both more elastic than the rigid clathrin-coated pits. We analyzed the results with the current mechanical model (Rauch and Farge, Biophys J 2000;78:3036–3047) and suggest here that the functional clathrin-lattice is much stiffer than typical phospholipid bilayers.  相似文献   

7.
Because of the discovery of coated pits and vesicles more than 40 years ago and the identification of clathrin as a major component of the coat, it has been assumed that clathrin-coated pits (CCPs) are responsible for the uptake of most plasma membrane receptors undergoing internalization. The recent molecular characterization of clathrin-independent routes of endocytosis confirms that several alternative endocytic pathways operate at the plasma membrane of mammalian cells. This heterogeneous view of endocytosis has been expanded still further by recent studies, suggesting that different subpopulations of CCPs responsible for the internalization of specific sets of cargo may coexist. In the present review, we have discussed the experimental evidence in favor or against the existence of distinct parallel clathrin-dependent pathways at the plasma membrane.  相似文献   

8.
The importance of cholesterol for endocytosis has been investigated in HEp-2 and other cell lines by using methyl-beta-cyclodextrin (MbetaCD) to selectively extract cholesterol from the plasma membrane. MbetaCD treatment strongly inhibited endocytosis of transferrin and EGF, whereas endocytosis of ricin was less affected. The inhibition of transferrin endocytosis was completely reversible. On removal of MbetaCD it was restored by continued incubation of the cells even in serum-free medium. The recovery in serum-free medium was inhibited by addition of lovastatin, which prevents cholesterol synthesis, but endocytosis recovered when a water-soluble form of cholesterol was added together with lovastatin. Electron microscopical studies of MbetaCD-treated HEp-2 cells revealed that typical invaginated caveolae were no longer present. Moreover, the invagination of clathrin-coated pits was strongly inhibited, resulting in accumulation of shallow coated pits. Quantitative immunogold labeling showed that transferrin receptors were concentrated in coated pits to the same degree (approximately sevenfold) after MbetaCD treatment as in control cells. Our results therefore indicate that although clathrin-independent (and caveolae-independent) endocytosis still operates after removal of cholesterol, cholesterol is essential for the formation of clathrin-coated endocytic vesicles.  相似文献   

9.
Sphingolipids (SLs) play important roles in membrane structure and cell function. Here, we examine the SL requirements of various endocytic mechanisms using a mutant cell line and pharmacological inhibitors to disrupt SL biosynthesis. First, we demonstrated that in Chinese hamster ovary cells we could distinguish three distinct mechanisms of clathrin-independent endocytosis (caveolar, RhoA, and Cdc42 dependent) which differed in cargo, sensitivity to pharmacological agents, and dominant negative proteins. General depletion of SLs inhibited endocytosis by each clathrin-independent mechanism, whereas clathrin-dependent uptake was unaffected. Depletion of glycosphingolipids (GSLs; a subgroup of SLs) selectively blocked caveolar endocytosis and decreased caveolin-1 and caveolae at the plasma membrane. Caveolar endocytosis and PM caveolae could be restored in GSL-depleted cells by acute addition of exogenous GSLs. Disruption of RhoA- and Cdc42-regulated endocytosis by SL depletion was shown to be related to decreased targeting of these Rho proteins to the plasma membrane and could be partially restored by exogenous sphingomyelin but not GSLs. Both the in vivo membrane targeting and in vitro binding to artificial lipid vesicles of RhoA and Cdc42 were shown to be dependent upon sphingomyelin. These results provide the first evidence that SLs are differentially required for distinct mechanisms of clathrin-independent endocytosis.  相似文献   

10.
Recent studies show that markers for lipid rafts are among the plasma membrane components most likely to be internalized independently of clathrin-coated pits, and there is evidence to suggest that lipid rafts may play a functional role in endocytic trafficking [1-5]. However, lipid rafts themselves are commonly defined purely in biochemical terms, by resistance to detergent extraction. The existence of rafts in live-cell membranes remains controversial [6-8], and their distribution relative to endocytic machinery has not been investigated. This study employs fluorescence resonance energy transfer (FRET) to show that in the plasma membrane (PM) of living cells the glycosphingolipid GM1, labeled with cholera toxin B subunit (CTB) [9,10], is found at least in part within clusters that also include GPI-linked proteins. These clusters are cholesterol-dependent and exclude non-raft proteins such as transferrin receptor and so possess predicted properties of lipid rafts. This type of lipid raft is largely excluded from clathrin-positive regions of the PM. They are found within Caveolin-positive regions at the same concentration as at the rest of the cell surface. The data provide evidence for a model in which lipid rafts are distributed uniformly across most of the PM of nonpolarized cells but are prevented from entering clathrin-coated pits.  相似文献   

11.
The small intestinal brush border is composed of lipid raft microdomains, but little is known about their role in the mechanism whereby cholera toxin gains entry into the enterocyte. The present work characterized the binding of cholera toxin B subunit (CTB) to the brush border and its internalization. CTB binding and endocytosis were performed in organ-cultured pig mucosal explants and studied by fluorescence microscopy, immunogold electron microscopy, and biochemical fractionation. By fluorescence microscopy CTB, bound to the microvillar membrane at 4 degrees C, was rapidly internalized after the temperature was raised to 37 degrees C. By immunogold electron microscopy CTB was seen within 5 min at 37 degrees C to induce the formation of numerous clathrin-coated pits and vesicles between adjacent microvilli and to appear in an endosomal subapical compartment. A marked shortening of the microvilli accompanied the toxin internalization whereas no formation of caveolae was observed. CTB was strongly associated with the buoyant, detergent-insoluble fraction of microvillar membranes. Neither CTB's raft association nor uptake via clathrin-coated pits was affected by methyl-beta-cyclodextrin, indicating that membrane cholesterol is not required for toxin binding and entry. The ganglioside GM(1) is known as the receptor for CTB, but surprisingly the toxin also bound to sucrase-isomaltase and coclustered with this glycosidase in apical membrane pits. CTB binds to lipid rafts of the brush border and is internalized by a cholesterol-independent but clathrin-dependent endocytosis. In addition to GM(1), sucrase-isomaltase may act as a receptor for CTB.  相似文献   

12.
Sterols are essential membrane components of eukaryotic cells. Interacting closely with sphingolipids, they provide the membrane surrounding required for membrane sorting and trafficking processes. Altering the amount and/or structure of free sterols leads to defects in endocytic pathways in mammalian cells and yeast. Plasma membrane structures functioning in the internalization step in mammalian cells, caveolae and clathrin-coated pits, are affected by cholesterol depletion. Accumulation of improper plasma membrane sterols prevents hyperphosphorylation of a plasma membrane receptor in yeast. Once internalized, sterols still interact with sphingolipids and are recycled to the plasma membrane to keep an intracellular sterol gradient with the highest amount of free sterols at the cell periphery. Interestingly, cells from patients suffering from sphingolipid storage diseases show high intracellular amounts of free cholesterol. We propose that the balanced interaction of sterols and sphingolipids is responsible for protein recruitment to specialized membrane domains and their functionality in the endocytic pathway.  相似文献   

13.
In polarized hepatocytes, the predominant route for apical resident proteins to reach the apical bile canalicular membrane is transcytosis. Apical proteins are first sorted to the basolateral membrane from which they are internalized and transported to the opposite surface. We have noted previously that transmembrane proteins and GPI-anchored proteins reach the apical bile canaliculi at very different rates. Here, we investigated whether these differences may be explained by the use of distinct endocytic mechanisms. We show that endocytosis of both classes of proteins at the basolateral membrane of polarized hepatic cells is dynamin dependent. However, internalization of transmembrane proteins is clathrin mediated, whereas endocytosis of GPI-anchored proteins does not require clathrin. Further analysis of basolateral endocytosis of GPI-anchored proteins showed that caveolin, as well as the small GTPase cdc42 were dispensable. Alternatively, internalized GPI-anchored proteins colocalized with flotillin-2–positive vesicles, and down-expression of flotillin-2 inhibited endocytosis of GPI-anchored proteins. These results show that basolateral endocytosis of GPI-anchored proteins in hepatic cells occurs via a clathrin-independent flotillin-dependent pathway. The use of distinct endocytic pathways may explain, at least in part, the different rates of transcytosis between transmembrane and GPI-anchored proteins.  相似文献   

14.
Transmembrane proteins destined to endosomes are selectively accumulated in clathrin-coated pits at the plasma membrane and rapidly internalized in clathrin-coated vesicles. The recognition of specific sequence motifs in transmembrane cargo by coated-pit proteins confers specificity on the endocytic process. Interaction of membrane cargo with the clathrin adaptor protein complex AP-2 is the major mechanism of cargo sorting into coated pits in mammalian cells. Recent studies have revealed a variety of alternative mechanisms of cargo recruitment involving additional adaptor proteins. These alternative mechanisms appear to be particularly important during clathrin-mediated endocytosis of signaling receptors.  相似文献   

15.
Endocytosis is involved in an enormous variety of cellular processes. To date, most studies on endocytosis in mammalian cells have focused on pathways that start with uptake through clathrin-coated pits. Recently, new techniques and reagents have allowed a wider range of endocytic pathways to begin to be characterized. Various non-clathrin endocytic mechanisms have been identified, including uptake through caveolae, macropinosomes and via a separate constitutive pathway. Many markers for clathrin-independent endocytosis are found in detergent-resistant membrane fractions, or lipid rafts. We will discuss these emerging new findings and their implications for the nature of lipid rafts themselves, as well as for the potential roles of non-clathrin endocytic pathways in remodeling of the plasma membrane and in regulating the membrane composition of specific intracellular organelles.  相似文献   

16.
Clathrin-coated pits and caveolae are two of the most recognizable features of the plasma membrane of mammalian cells. While our understanding of the machinery regulating and driving clathrin-coated pit-mediated endocytosis has progressed dramatically, including the elucidation of the structure of individual components and partial in vitro reconstitution, the role of caveolae as alternative endocytic carriers still remains elusive 50 years after their discovery. However, recent work has started to provide new insights into endocytosis by caveolae and into apparently related pathways involving lipid raft domains. These pathways, distinguished by their exquisite sensitivity to cholesterol-sequestering agents, can involve caveolae but also exist in cells devoid of caveolins and caveolae. This review examines the current evidence for the involvement of rafts and caveolae in endocytosis and the molecular players involved in their regulation.  相似文献   

17.
Transferrin uptake by Trypanosoma cruzi epimastigotes occurs mainly through the cytostome/cytopharynx. Here, we present evidences for the association of sterol-rich membrane domains with the transferrin endocytic site. Assays using pharmacological treatments to disrupt clathrin-coated pits and hinder caveolae formation showed no association between transferrin uptake and clathrin-dependent endocytosis, but indicated that cholesterol stability in membrane domains is essential for the endocytosis of transferrin. Furthermore, it was observed a connection between the integrity of cytoskeleton elements at the cytopharynx and the function of the cytostome. Our data show that T. cruzi epimastigotes depend on a specialized pathway for transferrin uptake, which is cholesterol-dependent, clathrin-independent, and closely associated with the structural stability of the cytostome/cytopharynx cytoskeleton.  相似文献   

18.
Clathrin-dependent endocytosis is a main entry mechanism for the glycolipid-binding Shiga toxin (Stx), although clathrin-independent pathways are also involved. Binding of Stx to its receptor Gb3 not only is essential for Stx retrograde transport to the endoplasmic reticulum and toxicity but also activates signaling through the tyrosine kinase Syk. We previously described that Syk activity is important for Stx entry, but it remained unclear how this kinase modulates endocytosis of Stx. Here we characterized the effects of Stx and Syk on clathrin-coated pit formation. We found that acute treatment with Stx results in an increase in the number of clathrin-coated profiles as determined by electron microscopy and on the number of structures containing the endocytic AP-2 adaptor at the plasma membrane determined by live-cell spinning disk confocal imaging. These responses to Stx require functional Syk activity. We propose that a signaling pathway mediated by Syk and modulated by Stx leads to an increased number of endocytic clathrin-coated structures, thus providing a possible mechanism by which Stx enhances its own endocytosis.  相似文献   

19.
To understand the posttranslational conversion of the cellular prion protein (PrPC) to its pathologic conformation, it is important to define the intracellular trafficking pathway of PrPC within the endomembrane system. We studied the localization and internalization of PrPC in CHO cells using cryoimmunogold electron microscopy. At steady state, PrPC was enriched in caveolae both at the TGN and plasma membrane and in interconnecting chains of endocytic caveolae. Protein A-gold particles bound specifically to PrPC on live cells. These complexes were delivered via caveolae to the pericentriolar region and via nonclassical, caveolae-containing early endocytic structures to late endosomes/lysosomes, thereby bypassing the internalization pathway mediated by clathrin-coated vesicles. Endocytosed PrPC-containing caveolae were not directed to the ER and Golgi complex. Uptake of caveolae and degradation of PrPC was slow and sensitive to filipin. This caveolae-dependent endocytic pathway was not observed for several other glycosylphosphatidyl inositol (GPI)-anchored proteins. We propose that this nonclassical endocytic pathway is likely to determine the subcellular location of PrPC conversion.  相似文献   

20.
We have used RNA interference to knock down the AP-2 mu2 subunit and clathrin heavy chain to undetectable levels in HeLaM cells. Clathrin-coated pits associated with the plasma membrane were still present in the AP-2-depleted cells, but they were 12-fold less abundant than in control cells. No clathrin-coated pits or vesicles could be detected in the clathrin-depleted cells, and post-Golgi membrane compartments were swollen. Receptor-mediated endocytosis of transferrin was severely inhibited in both clathrin- and AP-2-depleted cells. Endocytosis of EGF, and of an LDL receptor chimera, were also inhibited in the clathrin-depleted cells; however, both were internalized as efficiently in the AP-2-depleted cells as in control cells. These results indicate that AP-2 is not essential for clathrin-coated vesicle formation at the plasma membrane, but that it is one of several endocytic adaptors required for the uptake of certain cargo proteins including the transferrin receptor. Uptake of the EGF and LDL receptors may be facilitated by alternative adaptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号