首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of metals in medicine has grown in popularity in clinical and commercial settings. In this study, the immune-protecting effects and the hypoglycemic and antioxidant activity of vanadyl sulfate (VOSO4) and/or selenium tetrachloride (Se) on oxidative injury, DNA damage, insulin resistance, and hyperglycemia were assessed. Fifty male albino rats were divided into five groups, and all treatments were administrated at 9:00 a.m. daily for 60 successive days: control, STZ (Streptozotocin; 50 mg/kg of STZ was given to 6 h fasted animals in a single dose, followed by confirmation of diabetic state occurrence after 72 h by blood glucose estimation at >280 mg/dl), STZ (Diabetic) plus administration of VOSO4 (15 mg/kg) for 60 days, STZ (Diabetic) plus administration of selenium tetrachloride (0.87 mg/Kg), and STZ plus VOSO4 and, after 1/2 h, administration of selenium tetrachloride at the above doses. The test subjects’ blood glucose, insulin hormone, HbA1C, C-peptide, antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, myeloperoxidase, and xanthine oxidase), markers of lipid peroxidation (MDA), and histological sections of pancreatic tissues were evaluated, and a comet assay was performed. Histological sections in pancreas tissues were treated as indicators of both VOSO4 and selenium tetrachloride efficacy, either alone or combined, for the alleviation of STZ toxicity. The genotoxicity of diabetes mellitus was assessed, and the possible therapeutic roles of VOSO4 or selenium tetrachloride, or both, on antioxidant enzymes were studied. The findings show that the administration of VOSO4 with selenium tetrachloride reduced oxidative stress to normal levels, lowered blood glucose levels, and elevated insulin hormone. Additionally, VOSO4 with selenium tetrachloride had a synergistic effect and significantly decreased pancreatic genotoxicity. The data clearly show that both VOSO4 and selenium tetrachloride inhibit pancreatic and DNA injury and improve the oxidative state in male rats, suggesting that the use of VOSO4 with selenium tetrachloride is a promising synergistic potential ameliorative agent in the diabetic animal model.  相似文献   

2.
Chromium copper arsenate (CCA) was used for the protection of wood building materials until the restriction by EPA in 2002.During a short period of time 14–24 h, a comparative nephrotoxicity study was performed regarding the effects of CCA and its compounds per se. Histopathological and histochemical features were correlated with the concentration of the total arsenic and chromium in mice kidney.Animals were subcutaneously injected with CCA (7.2 mg/kg arsenic and 10.2 mg/kg chromium per body weight), CrO3 (10.2 mg/kg), As2O5 (7.2 mg/kg) and NaCl (0.9%) per se.The histopathological examination of the renal sections evidenced acute tubular necrosis in the groups of animals exposed to CCA (in both periods of time).Although the same contents of pentavalent arsenic and hexavalent chromium were injected in treated animals with CCA and with the prepared solutions of As2O5 and CrO3, the arsenic concentration on kidneys of CCA-exposed animals was much higher than those in animals exposed to As2O5 (32- and 28-fold higher at 14 and 24 h, respectively). However, the elimination of chromium seems to occur similarly in the kidneys of animals treated with CCA and CrO3 per se. Interactions among the components of CCA result in a marked decrease of the ability of kidney to eliminate simultaneously both analytes. The nephrotoxicity of CCA was higher than its components per se, evidencing a possible synergetic effect.  相似文献   

3.
BackgroundIn this study, chromium (III) complex was synthesized from genistein (GEN) which had good hypoglycemic activity and inorganic chromium (III) element, and its hypoglycemic activity and sub-acute toxicity were studied.MethodsThe genistein-chromium (III) complex was synthesized by chelating chromium with genistein in ethanol and its structure was determined by LC–MS, atomic absorption spectroscopy, UV–vis spectroscopy, infrared spectroscopy, elemental and thermodynamic analysis. The anti-diabetic activity of the complex was assessed in db/db mice and C57 mice by daily oral gavage for 4 weeks. The sub-acute toxicity test was carried out on KM mice with this complex.ResultsThe molecular structure of this complex was inferred as a complex [CrGEN3] formed by three ligands and one chromium element. The complex could significantly improve the body weight of db/db mice, fasting blood glucose, random blood glucose, organ index, glycogen levels and the performance of OGTT (Oral Glucose Tolerance Test) and ITT (Insulin Tolerance Test) in db/db mice (p < 0.05). The morphology of liver, kidney, pancreas and skeletal muscle also had obviously improvement and repairment. Effects on serum indices and antioxidant enzymes activities of db/db mice showed that the serum profiles and antioxidant ability of complex group had significant improvement compared with the diabetic control group (p < 0.05 or p < 0.01), and some indices even returned to normal levels. In addition, this complex did not produce any hazardous symptoms or deaths in sub-acute toxicity test. High dose of [CrGEN3] had no significant influence on serum indices and antioxidant capacity in normal mice, and the organ tissues maintained organized and integrity in the sub-acute toxicity study.ConclusionThe study of the genistein-chromium (III) complex showed that the complex had good hypoglycemic activity in vivo, and did not have the potential toxicity. These results would provide an important reference for the development of functional hypoglycemic foods or pharmaceuticals.  相似文献   

4.
Vanadyl sulfate (VOSO4) has been clinically tested in diabetic patients since 1995. Oral administrations of VOSO4 improved the type 2 diabetic state with respect to plasma glucose, HbA1c, and fructosamine levels. The development of toxicity by increasing the administration of VOSO4 should be avoided. One method was the utilization of vanadyl complexes with coordination compounds that are low-toxic and low-molecular-weight ligands to enhance the permeation of the metal ion to lipid bilayer membrane. Over a decade we have focused on a variety of heterocyclic compounds as bidentate ligands for metal ions. Vanadyl and zinc(II) complexes of 1-substituted 3-hydroxy-2-methyl-4(1H)-pyridinethiones, 4,5,6-substituted 1-hydroxy-2(1H)-pyrimidinones, 4-(p-substituted)phenyl-3-hydroxythiazole-2(3H)-thiones, 3-hydroxypyrone, 1-alkyl- or 1-phenylalkyl-3-hydroxy-2(1H)-pyridinethiones, optically active 1-substituted 3-hydroxy-4(1H)-pyridinethiones, and 5-dialkylsulfonamido- or 5,7-bis(dialkylsulfonamido)-8-hydroxyquinolines were prepared, and their insulin-mimetic activities were evaluated in terms of IC50 values which stand for a 50% inhibitory concentration of the free fatty acid release from isolated rat adipocytes. In this article, the relationship between the insulin-mimetic activity and the partition coefficient, the chirality, the substituent effect, molecular weight, the pKa value, and the coordination mode was discussed. In vivo blood glucose-lowering effects of the vanadyl complex with 1-hydroxy-4,6-dimethyl-2(1H)-pyrimidinone in streptozotocin (STZ)-induced diabetic rats and the zinc(II) complexes with 4-(p-chlorophenyl)thiazole- and 4-methylthiazole-2(3H)-thione in KK-Ay mice were also discussed.  相似文献   

5.
Cisplatin is an important chemotherapeutic agent; however, its nephrotoxicity limits its clinical use. Enhanced inflammatory response and oxidative/nitrosative stress seem to play a key role in the development of cisplatin-induced nephropathy. Activation of cannabinoid-2 (CB2) receptors with selective agonists exerts anti-inflammatory and tissue-protective effects in various disease models. We have investigated the role of CB2 receptors in cisplatin-induced nephrotoxicity using the selective CB2 receptor agonist HU-308 and CB2 knockout mice. Cisplatin significantly increased inflammation (leukocyte infiltration, CXCL1/2, MCP-1, TNFα, and IL-1β levels) and expression of adhesion molecule ICAM-1 and superoxide-generating enzymes NOX2, NOX4, and NOX1 and enhanced ROS generation, iNOS expression, nitrotyrosine formation, and apoptotic and poly(ADP-ribose) polymerase-dependent cell death in the kidneys of mice, associated with marked histopathological damage and impaired renal function (elevated serum BUN and creatinine levels) 3 days after the administration of the drug. CB2 agonist attenuated the cisplatin-induced inflammatory response, oxidative/nitrosative stress, and cell death in the kidney and improved renal function, whereas CB2 knockouts developed enhanced inflammation and tissue injury. Thus, the endocannabinoid system, through CB2 receptors, protects against cisplatin-induced kidney damage by attenuating inflammation and oxidative/nitrosative stress, and selective CB2 agonists may represent a promising novel approach to preventing this devastating complication of chemotherapy.  相似文献   

6.
BackgroundCadmium is a well known environmental pollutant and strong toxic heavy metal, that causes oxidative damage to various organs of the body, including the kidney. Cadmium (II) chloride (CdCl2) is a water-soluble crystalline form, which exhibits a higher affinity with chlorides at the target site. The current study examined the protective effects of Secoisolariciresinol diglucoside (SDG), a principal lignan extracted from flaxseeds against CdCl2-induced renal toxicity in rats.MethodsTwenty four healthy male Wistar rats with four groups of six animals each were used in the study. Group-1- Control was administered with saline. Group-2 –was treated with SDG; Group-3 with CdCl2 alone, and Group-4 were treated with CdCl2 plus SDG. The effect of Cd on kidney was assessed in terms of various parameters like lipid peroxidation, production of Nitric oxide (NO) and Myeloperoxidase (MPO), and kidney function markers like uric acid, urea, and creatinine. The levels of antioxidant molecules like glutathione content and the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were also measured, apart from histopathological studies.ResultsThe animals that received CdCl2, exhibited changes in the concentration of Cd in the kidney. The levels of kidney function markers like uric acid, urea, and creatinine were found to be abnormal in serum, and also there was a drastic decrease in the levels of glutathione content and the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase. The treatment of SDG significantly decreased (p < 0.05) the levels of NO and MPO in the animals treated with CdCl2 plus SDG when compared to the animal group treated with CdCl2 alone. The treatment of SDG before CdCl2 injection exhibited significant changes in the activity of the antioxidant enzymes, which was evidenced by the restoration in their activities, when compared to CdCl2 alone treated group (p < 0.05), as observed in the results of histopathology.ConclusionsThe findings of the present investigation suggested that SDG exhibited anti-oxidant, anti-apoptotic and renoprotective properties. Thus, SDG may act as a supramolecular binding component and naturally occurring metal chelating agent for metal cations like Cd2+. Therefore, flaxseed lignan-SDG can be used as a therapeutic agent against nephrotoxicity caused by cadmium. However, detailed future studies are needed to know the underlying mechanism of action of SDG against the Cd and other heavy metals induced nephrotoxicity.  相似文献   

7.
We have previously shown that 3 week oral VOSO4 treatment of streptozotocin (STZ, 60 mg/kg)-induced diabetic rats was able to correct diabetes for 13 weeks after treatment withdrawal. In the present study, we investigated whether a short-term (8 days) i.p. VOSO4 treatment was similarly able to reverse the diabetic state. Insulin secretory capacities were assessed at distance of treatment using the isolated pancreas preparation. Seven treatment-groups were performed: high dose VOSO4-treated diabetics (HVD, 1.3 mM/kg/8 days), food-restricted diabetics (FRD, food adjusted to HVD levels), low dose VOSO4-treated diabetes (LVD, 0.06 mM/kg/day), insulin-treated diabetics (ID, dose adjusted to normalize glycaemia) and VOSO4 (0.06 mM/kg/day) + insulin (dose adjusted to normalize glycaemia in the presence of vanadium)-treated diabetics (IVD), in addition to the corresponding untreated non-diabetic controls (C) and diabetics (D). Our results indicate that long-term correction of diabetes (a) can be obtained after an 8 day treatment using i.p. VOSO4 in diabetic animals retaining some degree of pancreatic function, (b) is not obtained with insulin treatment or food restriction although the association of VOSO4 and insulin was found beneficial, (c) can be prolonged in some individuals for at least 4 months, i.e. in conditions such that tissue vanadium concentrations had returned to values close to pre-treatment levels, (d) is associated with improved and in some cases normalized insulin secretion from isolated pancreas. The protective or corrective role of VOSO4 on diabetes-related pancreatic alterations, as well as the potential of the VOSO4-insulin association should be further studied in view of the possible use of vanadium derivatives in the treatment of diabetes.  相似文献   

8.
Pharmacological doses of ascorbate were evaluated for its ability to potentiate the toxicity of sodium orthovanadate (Na3VO4) in tumor cells. Cytotoxicity, inhibition of cell proliferation, generation of ROS and DNA fragmentation were assessed in T24 cells. Na3VO4 was cytotoxic against T24 cells (EC50 = 5.8 μM at 24 h), but in the presence of ascorbate (100 μM) the EC50 fell to 3.3 μM. Na3VO4 plus ascorbate caused a strong inhibition of cell proliferation (up to 20%) and increased the generation of ROS (4-fold). Na3VO4 did not directly cleave plasmid DNA, at this aspect no synergism was found occurring between Na3VO4 and ascorbate once the resulting action of the combination was no greater than that of both substances administered separately. Cells from Ehrlich ascites carcinoma-bearing mice were used to determine the activity of antioxidant enzymes, the extent of the oxidative damage and the type of cell death. Na3VO4 alone, or combined with ascorbate, increased catalase activity, but only Na3VO4 plus ascorbate increased superoxide dismutase activity (up to 4-fold). Oxidative damage on proteins and lipids was higher due to the treatment done with Na3VO4 plus ascorbate (2–3-fold). Ascorbate potentiated apoptosis in tumor cells from mice treated with Na3VO4. The results indicate that pharmacological doses of ascorbate enhance the generation of ROS induced by Na3VO4 in tumor cells causing inhibition of proliferation and apoptosis. Apoptosis induced by orthovanadate and ascorbate is closer related to inhibition on Bcl-xL and activation of Bax. Our data apparently rule out a mechanism of cell demise p53-dependent or related to Cdk2 impairment.  相似文献   

9.
《Free radical research》2013,47(7):742-750
Abstract

4-Hydroxynonenal (HNE) mediates oxidative stress-linked pathological processes; however, its role in the generation of reactive oxygen species (ROS) in macrophages is still unclear. Thus, this study investigated the sources and mechanisms of ROS generation in macrophages stimulated with HNE. Exposure of J774A.1 cells to HNE showed an increased production of ROS, which was attenuated by NADPH oxidase as well as 5-lipoxygenase (5-LO) inhibitors. Linked to these results, HNE increased membrane translocation of p47phox promoting NADPH oxidase activity, which was attenuated in peritoneal macrophages from 5-LO-deficient mice as well as in J774A.1 cells treated with a 5-LO inhibitor, MK886 or 5-LO siRNA. In contrast, HNE-enhanced 5-LO activity was not affected by inhibition of NADPH oxidase. Furthermore, leukotriene B4, 5-LO metabolite, was found to enhance NADPH oxidase activity in macrophages. Altogether, these results suggest that 5-LO plays a critical role in HNE-induced ROS generation in murine macrophages through activation of NADPH oxidase.  相似文献   

10.
Mangosteen extracts (ME) contain high levels of polyphenolic compounds and antioxidant activity. Protective effects of ME against β-amyloid peptide (Aβ), induced cytotoxicity have been reported. Here, we further studied the protective effects of ME against oxidative stress induced by hydrogen peroxide (H2O2) and polychlorinated biphenyls (PCBs), and demonstrated the protection against memory impairment in mice. The cytoprotective effects of ME were measured as cell viability and the reduction in ROS activity. In SK-N-SH cell cultures, 200 μg/ml ME could partially antagonize the effects of 150 or 300 µM H2O2 on cell viability, ROS level and caspase-3 activity. At 200, 400 or 800 µg/ml, ME reduced AChE activity of SK-N-SH cells to about 60% of the control. In vivo study, Morris water maze and passive avoidance tests were used to assess the memory of the animals. ME, especially at 100 mg/kg body weight, could improve the animal’s memory and also antagonize the effect of scopolamine on memory. The increase in ROS level and caspase-3 activity in the brain of scopolamine-treated mice were antagonized by the ME treatment. The study demonstrated cytoprotective effects of ME against H2O2 and PCB-52 toxicity and having AChE inhibitory effect in cell culture. ME treatment in mice could attenuate scopolamine-induced memory deficit and oxidative stress in brain.  相似文献   

11.
12.
In developing new insulinomimetic zinc(II) complexes with different coordination structures and with a blood glucose-lowering effect to treat type 2 diabetic animals, we found a potent bis(maltolato)zinc(ll) complex, Zn(mal)2. Using the complex as the leading compound, we examined the in vitro and in vivo structure-activity relationships of Zn(mal)2 and its related complexes in respect to the inhibition of free fatty acids (FFA) release and the enhancement of glucose uptake in isolated rat adipocytes treated with epinephrine (adrenaline), and hypoglycemic activity. Among the compounds tested, a new Zn(II) complex with allixin that was isolated from garlic, bis(allixinato)Zn(II), Zn(alx)2, was found to exhibit the highest insulin-mimetic and hypoglycemic activities in type 2 KK-Ay diabetic mice. On the basis of the results, Zn(alx)2, complex was proposed to be a potent candidate for the treatment of type 2 diabetes.  相似文献   

13.
Cancer chemotherapy drug cisplatin is known for its nephrotoxicity. The aim of this study is to investigate whether Epigallocatechin 3-Gallate (EGCG) can reduce cisplatin mediated side effect in kidney and to understand its mechanism of protection against tissue injury. We used a well-established 3-day cisplatin induced nephrotoxicity mice model where EGCG were administered. EGCG is a major active compound in Green Tea and have strong anti-oxidant and anti-inflammatory properties. EGCG protected against cisplatin induced renal dysfunction as measured by serum creatinine and blood urea nitrogen (BUN). EGCG improved cisplatin induced kidney structural damages such as tubular dilatation, cast formation, granulovaculoar degeneration and tubular cell necrosis as evident by PAS staining. Cisplatin induced kidney specific mitochondrial oxidative stress, impaired activities of mitochondrial electron transport chain enzyme complexes, impaired anti-oxidant defense enzyme activities such as glutathione peroxidase (GPX) and manganese superoxide dismutase (MnSOD) in mitochondria, inflammation (tumor necrosis factor α and interleukin 1β), increased accumulation of NF-κB in nuclear fraction, p53 induction, and apoptotic cell death (caspase 3 activity and DNA fragmentation). Treatment of mice with EGCG markedly attenuated cisplatin induced mitochondrial oxidative/nitrative stress, mitochondrial damages to electron transport chain activities and antioxidant defense enzyme activities in mitochondria. These mitochondrial modulations by EGCG led to protection mechanism against cisplatin induced inflammation and apoptotic cell death in mice kidney. As a result, EGCG improved renal function in cisplatin mediated kidney damage. In addition to that, EGCG attenuated cisplatin induced apoptotic cell death and mitochondrial reactive oxygen species (ROS) generation in human kidney tubular cell line HK-2. Thus, our data suggest that EGCG may represent new promising adjunct candidate for cisplatin.  相似文献   

14.

The toxicity of heavy metals such as mercury (Hg) in humans and animals is well documented. The kidney is the primary deposition site of inorganic-Hg and target organ of its toxicity. The present study investigated the protective efficacy of flaxseed lignan-Secoisolariciresinol diglucoside (SDG) on nephrotoxicity induced by mercuric chloride (HgCl2). Rats were intraperitoneally injected with HgCl2 (2 mg/kg/day) and renal toxicity was induced. Subcutaneous administration of rats with SDG (5 mg/kg/day) as a pre-treatment caused a significant reversal of HgCl2 induced increase in blood urea, creatinine, glutathione s-transferase and catalase (CAT). On the other hand, administration of SDG with HgCl2 restored normal levels of albumin and superoxide dismutase (SOD). Histological examination of kidneys confirmed that pre-treatment of SDG before HgCl2 administration significantly reduced its pathological effects. Thus, the results of the present investigation suggest that SDG can significantly reduce renal damage, serum and tissue biochemical profiles caused by HgCl2 induced nephrotoxicity. Hence, SDG may be recommended for clinical trials in the treatment of kidney disorders caused by exposure to Hg.

  相似文献   

15.
Inhibition of xanthine oxidase-catalyzed conversion of xanthine to uric acid by various pyrazolopyrimidine-based inhibitors (allopurinol derivatives) was evaluated and compared with the standard inhibitor allopurinol. Three compounds out of the seven compounds used in the study were found to be reasonably good inhibitors of xanthine oxidase (XO). 4-Amino-6-mercaptopyrazolo-3,4-d-pyrimidine was found to be the most potent inhibitor of XO (IC50=0.600±0.009 µM). 4-Mercapto-1H-pyrazolo-3,4-d-pyrimidine (IC50=1.326±0.013 µM) and 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine (IC50=1.564±0.065 µM) also showed inhibitory activity comparable to that of allopurinol (IC50 = 0.776 ± 0.012 µM). All three compounds showed competitive type of inhibition with comparable Ki values. Induction of the electron transfer reaction catalyzed by XO in the presence of these compounds monitored as reduction of 2,6-dichlorophe nolindophenol (DCPIP) revealed that electron transfer by 4-amino-6-mercaptopyrazolo-3,4-d-pyrimidine is comparable to that obtained by allopurinol or xanthine. However, 4-mercapto-1H-pyrazolo-3,4-d-pyrimidine and 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine did not show DCPIP reduction. On the other hand, enzymatic reduction of cytochrome c in the presence of the three compounds was found to be insignificant and much less in comparison to allopurinol and xanthine. Therefore, both 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine and 4-mercapto-1H-pyrazolo-3,4-d-pyrimidine displayed the inhibitory property and also did not produce XO-mediated reactive oxygen species (ROS). Since 4-mercapto-1H-pyrazolo-3,4-d-pyrimidine was found to have some toxicity, the effect of 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine on the enzymatic formation of uric acid and ROS was investigated and it was found that this compound inhibited enzymatic generation of both uric acid and ROS. It can be noted that the standard inhibitor, allopurinol, inhibits uric acid formation but produces ROS.  相似文献   

16.
BackgroundCisplatin (CIS) is widely used in the chemotreatment of pediatric tumors. However, the CIS use is limited because of its high incidence of toxicity, mainly nephrotoxicity. Although there are many studies about CIS-related nephrotoxicity in animal models, only a few studies focus on juvenile animals. Because redox disturbances have been associated with kidney damage induced by CIS, this study aimed to compare the effectiveness of Ebselen and diphenyl diselenide (PhSe)2 against nephrotoxicity induced by CIS in juvenile rats.MethodsJuvenile Wistar rats were randomly divided into six groups: rats from groups I to III received an intraperitoneal (i.p.) injection with saline solution. The other groups received CIS (i.p., 6 mg/kg) on the first day. One hour before CIS injection and on the next four days, animals of groups III and V were intragastrically treated with Ebselen (11 mg/kg) whereas those from groups IV and VI received (PhSe)2 (12 mg/kg). After 24 h of the last treatment, blood and kidney were collected, and the parameters of renal function and oxidative stress were determined.ResultsKidney damage induced by CIS was confirmed by the increase of creatinine, urea and uric acid levels in the blood of juvenile rats. The renal oxidative disturbance was characterized by an increase in the levels of thiobarbituric acid reactive substances (TBARS), protein carbonyl, and nitrogen oxides (Nox), as well as the decrease in non-protein thiol content (NPSH), glutathione-S-transferase (GST), catalase (CAT) and superoxide dismutase (SOD) activities. CIS inhibited the activities of δ-aminolevulinic acid dehydratase (δ-ALA-D) and Na+, K+-ATPase and down-regulated the Nrf2/Keap-1/HO-1 pathway in the kidney of juvenile rats.ConclusionBoth Ebselen and (PhSe)2 modulated back to the normal levels all parameters altered by the CIS administration in the kidney of juvenile rats. Thus, this study shows that (PhSe)2 was as effective as Ebselen in protecting the kidney against oxidative damage caused by CIS in rats.  相似文献   

17.
Lai  Tianbao  Chen  Liangyi  Chen  Xingyu  He  Jianquan  Lv  Peiyu  Ge  Hua 《Molecular and cellular biochemistry》2019,453(1-2):205-215

Cis-diamminedichloroplatinum(II) (cisplatin) (CP) is an important chemotherapeutic agent used in the treatment of several cancers. However, it has several side effects including nephrotoxicity gonadotoxicity, hepatotoxicity, and ototoxicity. In in vitro experiments, antioxidants or reactive oxygen species scavengers have a cytoprotective effect on cells exposed to cisplatin (CP). Ellagic acid (EA) is one such bioactive polyphenol that is abundant in some fruits, nuts, and seeds. Various authors have reported that EA has strong antioxidant and antitumor potential. The present study was, therefore, carried out to explore the protective potential of EA on CP-induced gonadotoxicity and nephrotoxicity in colon tumor-bearing mice. Animals were divided into five groups: Group I: normal control, Group II: DMH treated. After 20 weeks of DMH treatment, the animals were divided into four subgroups, viz., Group III: no treatment, Group IV: EA, Group V: CP, and Group VI: CP?+?EA. Administration of EA significantly ameliorated the toxicity caused by CP as indicated by improved kidney function tests and reproductive function tests. EA treatment to CP-abused mice also led to a marked reduction in the extent of peroxidative damage to tissue as was evident from the improvement in the histopathological changes in kidney and testis. Blood counts were also improved on administration of EA to CP-treated mice. This article provides the evidence that antioxidant efficacy of EA has beneficial effects on CP-induced nephrotoxicity and gonadotoxicity and contributes to understanding the role of oxidative stress, and suggests several points as part of the mechanism of CP toxicity.

  相似文献   

18.
This work investigated the preventive effect of diphenyl diselenide [(PhSe)2] on renal and hepatic toxicity biomarkers and oxidative parameters in adult mice exposed to mercury chloride (HgCl2). Selenium (Se) and mercury (Hg) determination was also carried out. Mice received a daily oral dose of (PhSe)2 (5.0 mg/kg/day) or canola oil for five consecutive days. During the following five days, the animals were treated with a daily subcutaneous dose of HgCl2 (5.0 mg/kg/day) or saline (0.9%). Twenty-four hours after the last HgCl2 administration, the animals were sacrificed and biological material was obtained. Concerning toxicity biomarkers, Hg exposure inhibited blood δ-aminolevulinic acid dehydratase (δ-ALA-D), serum alanine aminotransferase (ALT) activity and also increased serum creatinine levels. (PhSe)2 partially prevented blood δ-ALA-D inhibition and totally prevented the serum creatinine increase. Regarding the oxidative parameters, Hg decreased kidney TBARS levels and increased kidney non-protein thiol levels, while (PhSe)2 pre-treatment partially protected the kidney thiol levels increase. Animals exposed to HgCl2 presented Hg content accumulation in blood, kidney and liver. The (PhSe)2 pre-treatment increased Hg accumulation in kidney and decreased in blood. These results show that (PhSe)2 can be efficient in protecting against these toxic effects presented by this Hg exposure model.  相似文献   

19.
N-Acetylmuramyl-l-alanyl-d-isoglutamine (MDP), a synthetic immunoadjuvant, was incubated with spleen cells of DBA/2 or Balb/c mice and optimal responses were obtained after 4 or 5 days of culture in a serum-free medium supplemented with 2-mercaptoethanol. In contrast, lymphocytes of (C57B1/6 × AKR)F1 hybrids responded weakly under the same conditions. The results reported here show that like in the case of DBA/2 and Balb/c strains, spleen cells of Swiss mice and of inbred AKR and CBA mice could be stimulated in vitro whereas C57B1/6 and LPS-refractory C3H/He mice did not respond. Fourteen synthetic MDP analogs (eight known to be adjuvant active and six devoid of activity) were tested in DBA/2 high-responder mice. A good correlation was observed between in vitro stimulation and the presence or absence of adjuvant activity in vivo of these compounds.  相似文献   

20.
Residual oil fly ash (ROFA) is a pollutantdust that stimulates production of reactive oxygen species (ROS) frommitochondria and apoptosis in alveolar macrophages (AM), butthe relationship between these two processes is unclear. In this study,human AM were incubated with ROFA or vanadyl sulfate(VOSO4), the major metal constituent in ROFA, with orwithout nitro-L-arginine methyl ester (L-NAME),diphenyleneiodonium (DPI), and mitochondrial electron transportinhibitors. Interactions among production of ROS, nitric oxide (NO),and apoptosis of AM were determined. ROFA-stimulated ROSproduction was attenuated by DPI, rotenone, antimycin, and NaN3, but not by L-NAME, a pattern mimicked byVOSO4. ROFA-induced apoptosis was inhibited byL-NAME and a caspase-3-like protease inhibitor, butnot by mitochondrial inhibitors. ROFA enhanced NO-mediated increase incaspase-3-like activity. VOSO4 had minor effects onapoptosis. Thus ROFA-stimulated production of ROS from mitochondria was independent of apoptosis of AM, which wasmediated by activation of caspase-3-like proteases and NO. Thepro-oxidant effect but not the proapoptotic effect of ROFA wasmediated by vanadium.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号