首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium in sea urchin egg during fertilization   总被引:2,自引:0,他引:2  
Calcium plays a strikingly important role in two of the major events in developmental biology: cell activation and differentiation. In this review we begin with the location and quantity of intracellular calcium in sea urchin oocytes, and then discuss the changes that occur during fertilization and egg activation, placing special emphasis on the mobilization and redistribution of intracellular calcium. We also discuss the propagation of the calcium wave and the role of the burst of calcium on the process of reorganizing the egg cortex at fertilization.  相似文献   

2.
3.
4.
5.
6.
Fertilization of the sea urchin egg triggers a sequence of events that are necessary for metabolic derepression and stimulation of proliferation. Changes in intracellular Ca2+ and H+ activities regulate the sequence of events. Intracellular sodium activity is important in the regulation of the intracellular activities of these ions and may directly regulate metabolic events. Using Na+-sensitive microelectrodes we continuously measured the intracellular Na+ activity during fertilization. The results show an increase in intracellular sodium activity medicated by two pathways of Na+ entry: Na+ permeability increase during the fertilization potential and initiation of Na+-H+ exchange activity. Intracellular Na+ activity returned to unfertilized levels by 20 min after fertilization. This decrease was inhibited by ouabain, which suggests the activation of Na+, K+ ATPase during fertilization.  相似文献   

7.
8.
Changes in the topography of the sea urchin egg after fertilization   总被引:9,自引:8,他引:1       下载免费PDF全文
Changes in the topography of the sea urchin egg after fertilization were studied by scanning and transmission electron microscopy. Strongylocentrotus purpuratus eggs were treated with dithiothreitol to modify the vitelline layer and to prevent formation of a fertilization membrane. Dithiothreitol treatment caused the microvilli to become more irregular in shape, length, and diameter than those of untreated eggs. The microvilli were similarly modified by trypsin treatment. This effect did not appear to be due to disruption of cytoskeletal elements beneath the plasma membrane, for neither colchicine nor cytochalasin B altered microvillar morphology. Thus, it appears that the vitelline layer may act in the maintenance of surface form of unfertilized eggs. Since dithiothreitol-treated eggs did not elevate a fertilization membrane, scanning electron microscopy could be used to directly observe modifications in the egg plasma membrane after fertilization. The wave of cortical granule exocytosis initiated at the point of attachment of the fertilizing sperm was characterized by the appearance of pits that subsequently opened, releasing the cortical granule contents and leaving depressions upon the egg surface. The perigranular membranes inserted during exocytosis were seen as smooth patches between the microvillous patches remaining from the original egg surface. This produced a mosaic surface with more than double the amount of membrane of unfertilized eggs. The mosaic surface subsequently reorganized to accommodate the inserted membrane material by elongation of microvilli. Blebs and membranous whorls present before reorganization suggested the existence of an unstable intermediate state of plasma membrane reorganization. Exocytosis and mosaic membrane formation were not blocked by colchicine or cytochalasin B, but microvillar elongation was blocked by cytochalasin B treatment.  相似文献   

9.
The three-dimensional organization of cortices isolated from unfertilized and fertilized Strongylocentrotus purpuratus eggs has been examined by several techniques of light and electron microscopy. It has been found that when moderate shear forces are used, the isolated unfertilized egg cortex, in addition to cortical granules, contains acidic vesicles and an elaborate network of rough endoplasmic reticulum. This network provides a physical link between the cell surface and several kinds of cytoplasmic organelles (mitochondria, yolk granules, acidic vesicles) which are retained as part of the isolated cortex when gentle shear forces are applied. Furthermore a good visualization of actin in the cortex is provided: it is present as short filaments and mostly within the stubby microvilli of the egg. Finally, it has been noted that plaques exist on the inside face of the plasma membrane ready to assemble into typical clathrin coats that prefigure the burst of coated vesicle endocytosis that takes place after fertilization. The cortex isolated soon after fertilization is shown to contain coated pits and a scaffolding of filaments (mostly actin) in which many acidic vesicles are embedded.  相似文献   

10.
The sea urchin egg receptor for sperm is a 350 kDa glycoprotein containing a large extracellular domain that contains the sperm binding site, a transmembrane domain and a short COOH- terminal intracellular domain. During oogenesis, the receptor protein is first detected in Golgi-associated vesicles and cortical granules. Not until the egg is mature does the receptor appear on the cell surface; at this stage the intact receptor is found in approximately equal quantities on the egg cell surface and in cortical granules. As a potentially unique type of receptor, we were interested in its fate following fertilization. Several techniques have revealed that, following sperm binding, the amount of receptor markedly decreases. Using western blot analysis as well as direct measurement of the receptor protein, it was found that the membrane-bound form of the receptor rapidly disappeared following sperm binding to the egg, with only 3% of the receptor remaining after 30 s. Analysis by immupoelectron microscopy revealed that 30 s after sperm binding, 30% of the initial level of receptor was present. This remaining 30% was found mostly within the perivitelline space formed by the raised fertilization envelope. The disparity between these two sets of results (i.e. 3 vs 30%) is most likely accounted for by the exocytosis of receptor molecules from cortical granules; this fraction of the receptor would have been lost during isolation of the membrane-bound form of the receptor. Thus, unlike other cell surface receptors, the sea urchin egg receptor for sperm is not endocytosed and recycled following ligand binding. Rather, it disappears, presumably as a result of proteolysis. Transiently, the cortical granule form of the receptor is found released into the perivitelline space where it may bind to sperm and thereby prevent polyspermy. Despite the apparent secretion of this form of the receptor, experiments with antibodies to the extracellular and intracellular domains indicate that the receptors in cortical granules and in the plasmic membrane are similar, if not identical.  相似文献   

11.
Fertilization in the sea urchin is accompanied by rapid reorganization of the egg endoplasmic reticulum (ER). ER-derived vesicles contribute to one of three classes of membranes used in assembling the male pronuclear envelope in vitro. We provide here biochemical evidence for the rearrangement of sea urchin egg cytoplasmic membrane domains at fertilization up to the first mitosis, with respect to two nuclear envelope markers, lamin B and lamin B receptor (LBR), using purified vesicles prepared from homogenates fractionated by floatation on sucrose gradients. In unfertilized eggs, immunoprecipitation data indicate that most of lamin B and LBR are localized in the same vesicles but do not interact. By 3 min post-fertilization, both proteins are more widely distributed across the gradients and by 12 min most of lamin B and LBR are localized in vesicles of different densities. This partitioning is maintained throughout S phase. At mitosis, most lamin B and LBR remain in distinct vesicles, while a small proportion of lamin B and LBR, likely derived from the disassembled nuclear envelope, associate in a minor subset of vesicles. The results illustrate a dynamic reorganization of egg cytoplasmic membranes at fertilization, and the establishment of distinct membrane domains enriched in specific nuclear envelope markers during the first cell cycle of sea urchin development. Additionally, we demonstrate that male pro-nuclear membrane assembly occurs only when both cytosol and membranes originate from fertilized but not unfertilized eggs, suggesting that fertilization-induced membrane rearrangements contribute to the ability of the egg to assemble the male pronuclear envelope.  相似文献   

12.
Intracellular calcium release at fertilization in the sea urchin egg.   总被引:35,自引:0,他引:35  
Fertilization or ionophore activation of Lytechinus pictus eggs can be monitored after injection with the Ca-sensitive photoprotein aequorin to estimate calcium release during activation. We estimate the peak calcium transient to reach concentrations of 2.5–4.5 μM free calcium 45–60 sec after activation and to last 23? min, assuming equal Ca2+ release throughout the cytoplasm. Calcium is released from an intracellular store, since similar responses are obtained during fertilization at a wide range of external calcium concentrations or in zerocalcium seawater in ionophore activations. In another effort to estimate free calcium at fertilization, we isolated egg cortices, added back calcium quantitatively, and fixed for observation with a scanning electron microscope. In this way, we determined that the threshold for discharge of the cortical granules is between 9 and 18 μM Ca2+. Therefore, the threshold for the in vitro cortical reaction is about five times the amount of free calcium, assuming equal distribution in the egg. This result suggests that transient calcium release is confined to the inner subsurface of the egg.  相似文献   

13.
14.
15.
The extent of protein, RNA and DNA synthesis in early cleavage stages of the sea urchin embryo (Parechinus angulosus) was determined. A histone mRNA specific cDNA was used in hybridization experiments to investigate the cytoplasmic localization of maternal histone mRNA in the unfertilized sea urchin egg and first cleavage stage embryo. In the unfertilized egg histone mRNA was localized exclusively in ribonucleoprotein particles with none in ribosomes or polyribosomes. This distribution changed after fertilization, in particular, coupled with the first cleavage telophase there was a significant transfer of histone mRNA from the ribonucleoprotein fraction to the polyribosomes. The results indicate mRNA specific translational control mechanisms.  相似文献   

16.
17.
Since about 1880, the eggs and sperm of sea urchins have been used for the study of fertilization, the metabolic activation of development and gene regulatory mechanisms governing embryogenesis. Sea urchin gametes are a favorite material for observations of the process of fertilization in advanced high school, community college, and university biology laboratory courses. This article is a laboratory handout, designed for the student to follow in learning about fertilization. In addition to observations of sperm-egg interaction, simple experiments are described that demonstrate some mechanisms involved in the process. The hope is that by making simple observations of fertilization, the student will gain an appreciation for the fact that successive generations of higher organisms are bridged by the fusion of egg and sperm, two very different single cells.  相似文献   

18.
Integrins are expressed on the surface of some vertebrate eggs where they are thought to have a role in fertilization. The objective of this study is to determine if integrins are expressed on sea urchin eggs. The alphaB and betaC subunits were cloned using the homology polymerase chain reaction. Monoclonal and polyclonal antibodies were developed against bacterially expressed fragments of the extracellular domains of the betaC subunit and the alphaB subunit. As well, a monoclonal antibody was developed against a synthesized peptide corresponding to part of the cytoplasmic domain of betaC. Analysis of biotinylated egg cortex extracts immunoprecipitated with either anti-betaC or anti-alphaB yields bands of 130 and 225 kDa. Immunoblots confirm that betaC is part of the complex immunoprecipitated with anti-alphaB. Confocal immunofluorescence and immunogold electron microscopy show that betaC is present on the surface of the unfertilized egg at the tips of microvilli and in cortical granules. During the cortical reaction, immunoreactivity with antibodies to the extracellular domains of betaC and alphaB disappears from the egg surface, and microvillar casts on the fertilization envelope become immunoreactive. With antibodies to the cytoplasmic domain of betaC, immunoreactivity is lost from the surface of the egg, but the fertilization envelope does not immediately become immunoreactive. In immunoblots of egg cortex there are immunoreactive bands of the predicted sizes for alphaB and betaC. However, in fertilization envelopes, a second band that is slightly lower in molecular weight is also present. Eggs fertilized in the presence of soybean trypsin inhibitor have elongated microvilli that remain bound to the elevating fertilization envelope and immunoreactive to anti-betaC antibodies. Eggs fertilized in the presence of an ovoperoxidase inhibitor, 3-amino-1,2,4-triazole, have a patchy distribution of betaC immunoreactivity in fertilization envelopes. Together, these data suggest that alphaBbetaC integrins are expressed on the surface of unfertilized eggs and, during the cortical reaction, the extracellular domains are cleaved by proteases and cross-linked into the fertilization envelope by ovoperoxidase. The alphaBbetaC integrin receptors may have several potential functions prior to their removal at fertilization, including attachment of the vitelline envelope to the egg surface and anchoring the cortical cytoskeleton.  相似文献   

19.
The ER of eggs of the sea urchin Lytechinus pictus was stained by microinjecting a saturated solution of the fluorescent dicarbocyanine DiIC18(3) (DiI) in soybean oil; the dye spread from the oil drop into ER membranes throughout the egg but not into other organelles. Confocal microscopy revealed large cisternae extending throughout the interior of the egg and a tubular membrane network at the cortex. Since diffusion of DiI is confined to continuous bilayers, the spread of the dye supports the concept that the ER is a cell-wide, interconnected compartment. In time lapse observations, the internal cisternae were seen to be in continuous motion, while the cortical ER was stationary. After fertilization, the internal ER appeared to become more finely divided, beginning as a wave apparently coincident with the calcium wave and becoming most marked by 2-3 min. By 5-8 min the ER returned to an organization similar to that of the unfertilized egg. The cortical network also changed at fertilization; it became disrupted and eventually recovered. DiI labeling allowed continuous observations of the ER during pronuclear migration and mitosis. DiI-stained membranes accumulated in the region of the microtubule array surrounding the sperm nucleus and centriole (the sperm aster) as it migrated to the center of the egg; this accumulation persisted near the centrosomes and zygote nucleus throughout pronuclear fusion and the first two mitotic cycles. We have used a new method to observe the spatial and temporal organization of the ER in a living cell, and we have demonstrated a striking reorganization of the ER at fertilization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号