首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TGF-beta inhibits adipocyte differentiation, yet is expressed by adipocytes. The function of TGF-beta in adipogenesis, and its mechanism of action, is unknown. To address the role of TGF-beta signaling in adipocyte differentiation, we characterized the expression of the TGF-beta receptors, and the Smads which transmit or inhibit TGF-beta signals, during adipogenesis in 3T3-F442A cells. We found that the cell-surface availability of TGF-beta receptors strongly decreased as adipogenesis proceeds. Whereas mRNA levels for Smads 2, 3, and 4 were unchanged during differentiation, mRNA levels for Smads 6 and 7, which are known to inhibit TGF-beta responses, decreased severely. Dominant negative interference with TGF-beta receptor signaling, by stably expressing a truncated type II TGF-beta receptor, enhanced differentiation and decreased growth. Stable overexpression of Smad2 or Smad3 inhibited differentiation and dominant negative inhibition of Smad3 function, but not Smad2 function, enhanced adipogenesis. Increased Smad6 and Smad7 levels blocked differentiation and enhanced TGF-beta-induced responses. The inhibitory effect of Smad7 on adipocyte differentiation and its cooperation with TGF-beta was associated with the C-domain of Smad7. Our results indicate that endogenous TGF-beta signaling regulates the rate of adipogenesis, and that Smad2 and Smad3 have distinct functions in this endogenous control of differentiation. Smad6 and Smad7 act as negative regulators of adipogenesis and, even though known to inhibit TGF-beta responses, enhance the effects of TGF-beta on these cells.  相似文献   

2.
3.
Hepatic stellate cells are the primary cell type responsible for matrix deposition in liver fibrosis, undergoing a process of transdifferentiation into fibrogenic myofibroblasts. These cells, which undergo a similar transdifferentiation process when cultured in vitro, are a major target of the profibrogenic agent transforming growth factor-beta (TGF-beta). We have studied activation of the TGF-beta downstream signaling molecules Smads 2, 3, and 4 in hepatic stellate cells (HSC) cultured in vitro for 1, 4, and 7 days, with quiescent, intermediate, and fully transdifferentiated phenotypes, respectively. Total levels of Smad4, common to multiple TGF-beta superfamily signaling pathways, do not change as HSC transdifferentiate, and the protein is found in both nucleus and cytoplasm, independent of treatment with TGF-beta or the nuclear export inhibitor leptomycin B. TGF-beta mediates activation of Smad2 primarily in early cultured cells and that of Smad3 primarily in transdifferentiated cells. The linker protein SARA, which is required for Smad2 signaling, disappears with transdifferentiation. Additionally, day 7 cells demonstrate constitutive phosphorylation and nuclear localization of Smad 2, which is not affected by pretreatment with TGF-beta-neutralizing antibodies, a type I TGF-beta receptor kinase inhibitor, or activin-neutralizing antibodies. These results demonstrate essential differences between TGF-beta-mediated signaling pathways in quiescent and in vitro transdifferentiated hepatic stellate cells.  相似文献   

4.
BACKGROUND/AIMS: Profibrogenic TGF-beta signaling in hepatic stellate cells is modulated during transdifferentiation. Strategies to abrogate TGF-beta effects provide promising antifibrotic results, however, in vivo data regarding Smad activation during fibrogenesis are scarce. METHODS: Here, liver fibrosis was assessed subsequent to bile duct ligation by determining liver enzymes in serum and collagen deposition in liver tissue. Activated hepatic stellate cells were identified by immunohistochemistry and immunoblots for alpha smooth muscle actin. Cellular localization of Smad3 and Smad7 proteins was demonstrated by immunohistochemistry. RTPCR for Smad4 and Smad7 was conducted with total RNA and Northern blot analysis for Smad7 with mRNA. Whole liver lysates were prepared to detect Smad2/3/4 and phospho- Smad2/3 by Western blotting. RESULTS: Cholestasis induces TGF-beta signaling via Smad3 in vivo, whereas Smad2 phosphorylation was only marginally increased. Smad4 expression levels were unchanged. Smad7 expression was continuously increasing with duration of cholestasis. Hepatocytes of fibrotic lesions exhibited nuclear staining Smad3. In contrast to this, Smad7 expression was localized to activated hepatic stellate cells. CONCLUSIONS: Hepatocytes of damaged liver tissue display increased TGF-beta signaling via Smad3. Further, negative feedback regulation of TGF-beta signaling by increased Smad7 expression in activated hepatic stellate cells occurs, however does not interfere with fibrogenesis.  相似文献   

5.
Hepatic stellate cells (HSC) cultured on plastic spontaneously transdifferentiate to a myofibroblast-like cell type (MFB). This model system of hepatic fibrogenesis is characterized by phenotypic changes of the cells and increased matrix synthesis. Here, we analyzed if transdifferentiation-dependent induction of ECM components, e.g., collagen type I and thrombospondin-2 (TSP-2), and phenotypic changes are coregulated events and if both processes are mediated via TGF-beta pathway(s). Blocking the TGF-beta-dependent p38 MAPK pathway in HSC with the specific inhibitor SB203580 strongly reduces collagen I and TSP-2 mRNA expression without inhibiting upregulation of the typical MFB-marker, alpha-smooth-muscle actin (alpha-SMA). Similarly, interference with the Smad2/3/4 pathway using dexamethasone also heavily decreased expression of collagen type I and TSP-2 whereas transdifferentiation of HSC to the typical morphology of MFB with loss of fat droplets and increasing alpha-SMA was unchanged. Further, p38 MAPK mediated induction of collagen I and TSP-2 expression by TGF-beta1 was still achieved in the presence of dexamethasone, showing that dexamethasone does not block p38 while it delays Smad2 phosphorylation and antagonizes stimulation of a Smad3/Smad4 dependent TGF-beta reporter construct. Interestingly, in contrast to SB203580 and dexamethasone, overexpression of the TGF-beta antagonist Smad7 reduced ECM expression and simultaneously inhibited morphologic transdifferentiation, indicating that Smad7 fulfills additional features in HSC. In conclusion, our data show that phenotypic changes of transdifferentiating HSC and induction of matrix synthesis are independent processes, the latter being stimulated by both, Smad dependent and MAPK dependent TGF-beta signaling.  相似文献   

6.
Members of the transforming growth factor-beta (TGF-beta) superfamily regulate cell proliferation, differentiation, and apoptosis, controlling the development and maintenance of most tissues. TGF-beta signal is transmitted through the phosphorylation of Smad proteins by TGF-beta receptor serine/threonine kinase. During early tooth development, TGF-beta inhibits proliferation of enamel organ epithelial cells but the underlying molecular mechanisms are largely unknown. Here we tested the hypothesis that antagonistic effects between Smad2 and Smad7 regulate TGF-beta signaling during tooth development. Attenuation of Smad2 gene expression resulted in significant advancement of embryonic tooth development with increased proliferation of enamel organ epithelial cells, while attenuation of Smad7 resulted in significant inhibition of embryonic tooth development with increased apoptotic activity within enamel organ epithelium. These findings suggest that different Smads may have differential activities in regulating TGF-beta-mediated cell proliferation and death. Furthermore, functional haploinsufficiency of Smad2, but not Smad3, altered TGF-beta-mediated tooth development. The results indicate that Smads are critical factors in orchestrating TGF-beta-mediated gene regulation during embryonic tooth development. The effectiveness of TGF-beta signaling is highly sensitive to the level of Smad gene expression.  相似文献   

7.
8.
9.
Smads are intracellular signaling molecules of the transforming growth factor-beta (TGF-beta) superfamily that play an important role in the activation of hepatic stellate cells (HSCs) and hepatic fibrosis. Excepting the regulation of Smad7, receptor-regulated Smad gene expression is still unclear. We employed rat HSCs to investigate the expression and regulation of the Smad1 gene, which is a bone morphogenetic protein (BMP) receptor-regulated Smad. We found that the expression and phosphorylation of Smad1 are increased during the activation of HSCs. Moreover, TGF-beta significantly inhibits Smad1 gene expression in HSCs in a time- and dose-dependent manner. Furthermore, although both TGF-beta1 and BMP2 stimulate the activation of HSCs, they have different effects on HSC proliferation. In conclusion, Smad1 expression and phosphorylation are increased during the activation of HSCs and TGF-beta1 significantly inhibits the expression of the Smad1 gene.  相似文献   

10.
11.
12.
13.
It is now clear that resident myofibroblasts play a central role in the mediation of tissue fibrosis. The aim of the work outlined in this study is to increase our understanding of the mechanisms which drive the phenotypic and functional changes associated with the differentiation process. We have used an in vitro model of transforming growth factor-beta1 (TGF-beta1)-induced pulmonary fibroblast-myofibroblast differentiation to examine the role of the TGF-beta1 Smad protein signaling intermediates, in alterations of fibroblast phenotype and function associated with terminal differentiation. TGF-beta1 induced marked alteration in cell phenotype, such that cells resembled "epithelioid-postmitotic fibroblasts." This was associated with marked reorganization of the actin cytoskeleton and upregulation of alphaSMA gene expression. TGF-beta1 stimulation also induced alphaSMA protein expression with increased incorporation of alphaSMA into stress fibers. Following stimulation with TGF-beta1, subsequent addition of serum-free medium did not reverse TGF-beta1-induced morphological change, suggesting that TGF-beta1 induced a relatively stable alteration in fibroblast cell phenotype. Functionally, these phenotypic changes were associated with induction of type I, type III, and type IV collagen gene expression and an increase in the concentrations of the respective collagens in the cell culture supernatant. The role of Smad proteins in terminal differentiation of fibroblasts was examined by transfection of cells, with expression vectors for the TGFbeta1 receptor-regulated Smads (R-Smads) or the co-Smad, Smad 4. Transfection with Smad2 but not Smad3 resulted in TGF-beta1 independent alteration in fibroblast cell phenotype, up-regulation of alphaSMA mRNA and reorganization of the actin cytoskeleton. Transfection with Smad4 also induced alteration in cell phenotype, although this was not as pronounced as the effect of overexpression of Smad2. Overexpression of the Smad2, Smad3, or Smad4 proteins was associated with increased production of all collagen types. The study suggests that the phenotypic and functional changes associated with TGF-beta1-induced fibroblast terminal differentiation are differentially regulated by Smad proteins.  相似文献   

14.
Smad7 is an inhibitory Smad that acts as a negative regulator of signaling by the transforming growth factor-beta (TGF-beta) superfamily proteins. Smad7 is induced by TGF-beta, stably interacts with activated TGF-beta type I receptor (TbetaR-I), and interferes with the phosphorylation of receptor-regulated Smads. Here we show that Smurf1, an E3 ubiquitin ligase for bone morphogenetic protein-specific Smads, also interacts with Smad7 and induces Smad7 ubiquitination and translocation into the cytoplasm. In addition, Smurf1 associates with TbetaR-I via Smad7, with subsequent enhancement of turnover of TbetaR-I and Smad7. These results thus reveal a novel function of Smad7, i.e. induction of degradation of TbetaR-I through recruitment of an E3 ligase to the receptor.  相似文献   

15.
Transforming growth factor-beta1 (TGF-beta1) is a key mediator in tissue repair and fibrosis. Using small interference RNA (siRNA), the role of Smad2 and Smad3 in TGF-beta stimulation of human lung fibroblast contraction of collagenous matrix and induction of alpha-SMA and the role of alpha-SMA in contraction were assessed. HFL-1 cells were transfected with Smad2, Smad3 or control-siRNA, and cultured in floating Type I collagen gels +/- -TGF-beta1. TGF-beta1 augmented gel contraction in Smad2-siRNA- and control-siRNA-treated cells, but had no effect in Smad3-siRNA-treated cells. Similarly, TGF-beta1 upregulated alpha-SMA in Smad2-siRNA- and control-siRNA-treated cells, but had no effect on Smad3-siRNA-treated cells. Alpha-SMA-siRNA-treated cells did not contact the collagen gels with or without TGF-beta1, suggesting alpha-SMA is required for gel contraction. Thus, Smad3 mediates TGF-beta1-induced contraction and alpha-SMA induction in human lung fibroblasts. Smad3, therefore, could be a target for blocking contraction of human fibrotic tissue induced by TGF-beta1.  相似文献   

16.
Smad4 mediates signaling by the transforming growth factor-beta (TGF-beta) superfamily of cytokines. Smad signaling is negatively regulated by inhibitory (I) Smads and ubiquitin-mediated processes. Known mechanisms of proteasomal degradation of Smads depend on the direct interaction of specific E3 ligases with Smads. Alternatively, I-Smads elicit degradation of the TGF-beta receptor by recruiting the WW and HECT domain E3 ligases, Smurfs, WWP1, or NEDD4-2. We describe an equivalent mechanism of degradation of Smad4 by the above E3 ligases, via formation of ternary complexes between Smad4 and Smurfs, mediated by R-Smads (Smad2) or I-Smads (Smad6/7), acting as adaptors. Smurfs, which otherwise cannot directly bind to Smad4, mediated poly-ubiquitination of Smad4 in the presence of Smad6 or Smad7. Smad4 co-localized with Smad7 and Smurf1 primarily in the cytoplasm and in peripheral cell protrusions. Smad2 or Smad7 mutants defective in Smad4 interaction failed to induce Smurf1-mediated down-regulation of Smad4. A Smad4 mutant defective in Smad2 or Smad7 interaction could not be effectively down-regulated by Smurf1. We propose that Smad4 is targeted for degradation by multiple ubiquitin ligases that can simultaneously act on R-Smads and signaling receptors. Such mechanisms of down-regulation of TGF-beta signaling may be critical for proper physiological response to this pathway.  相似文献   

17.
18.
Inhibition of allergen-induced airway remodeling in Smad 3-deficient mice   总被引:10,自引:0,他引:10  
Intracellular signaling pathways that converge on Smad 3 are used by both TGF-beta and activin A, key cytokines implicated in the process of fibrogenesis. To determine the role of Smad 3 in allergen-induced airway remodeling, Smad 3-deficient and wild-type (WT) mice were sensitized to OVA and challenged by repetitive administration of OVA for 1 mo. Increased levels of activin A and increased numbers of peribronchial TGF-beta1(+) cells were detected in WT and Smad 3-deficient mice following repetitive OVA challenge. Smad 3-deficient mice challenged with OVA had significantly less peribronchial fibrosis (total lung collagen content and trichrome staining), reduced thickness of the peribronchial smooth muscle layer, and reduced epithelial mucus production compared with WT mice. As TGF-beta and Smad 3 signaling are hypothesized to mediate differentiation of fibroblasts to myofibroblasts in vivo, we determined the number of peribronchial myofibroblasts (Col-1(+) and alpha-smooth muscle actin(+)) as assessed by double-label immunofluorescence microscopy. Although the number of peribronchial myofibroblasts increased significantly in WT mice following OVA challenge, there was a significant reduction in the number of peribronchial myofibroblasts in OVA-challenged Smad 3-deficient mice. There was no difference in levels of eosinophilic airway inflammation or airway responsiveness in Smad 3-deficient compared with WT mice. These results suggest that Smad 3 signaling is required for allergen-induced airway remodeling, as well as allergen-induced accumulation of myofibroblasts in the airway. However, Smad 3 signaling does not contribute significantly to airway responsiveness.  相似文献   

19.
Transforming growth factor-beta (TGF-beta) is a potent inducer of collagenase-3 (MMP-13) gene expression in human gingival fibroblasts, and this requires activation of the p38 mitogen-activated protein kinase pathway. Here, we have constructed recombinant adenoviruses harboring genes for hemagglutinin-tagged Smad2, Smad3, and Smad4 and used these in dissecting the role of Smads, the signaling mediators of TGF-beta, in regulation of endogenous MMP-13 gene expression in human gingival fibroblasts. Adenoviral expression of Smad3, but not Smad2, augmented the TGF-beta-elicited induction of MMP-13 expression. In addition, adenoviral gene delivery of dominant negative Smad3 blocked the TGF-beta-induced MMP-13 expression in gingival fibroblasts. Co-expression of Smad3 with constitutively active MKK3b and MKK6b, the upstream activators of p38, resulted in nuclear translocation of Smad3 in the absence of TGF-beta and in induction of MMP-13 expression. The induction of MMP-13 expression by Smad3 and constitutively active mutants of MKK3b or MKK6b was blocked by specific p38 inhibitor SB203580 and by the dominant negative form of p38alpha. These results show that TGF-beta-induced expression of human MMP-13 gene in gingival fibroblasts is dependent on the activation of two distinct signaling pathways (i.e. Smad3 and p38alpha). In addition, these findings provide evidence for a novel type of cross-talk between Smad and p38 mitogen-activated protein kinase signaling cascades, which involves activation of Smad3 by p38alpha.  相似文献   

20.
Transforming growth factor-beta(1) (TGF-beta(1)) signal and downstream Smads play an important role in tissue fibrosis and matrix remodeling in various etiologies of heart failure. Inhibitory Smad7 (I-Smad7) is an inducible regulatory Smad protein that antagonizes TGF-beta(1) signal mediated via direct abrogation of R-Smad phosphorylation. The effect of ectopic I-Smad7 on net collagen production was investigated using hydroxyproline assay. Adenovirus-mediated I-Smad7 gene (at 100 multiplicity of infection) transfer was associated with significant decrease of collagen synthesis in the presence and absence of TGF-beta(1) in primary rat cardiac myofibroblasts. In I-Smad7-infected cells, we also observed the ablation of TGF-beta(1)-induced R-Smad2 phosphorylation vs. LacZ controls. Overdriven I-Smad7 was associated with significantly increased expression of immunoreactive 65-kDa matrix metalloproteinase-2 (MMP-2) protein in culture medium of myofibroblast compared with LacZ-infected cells. Expression of the 72-kDa MMP-2 variant, e.g., the inactive form, was not altered by exogenous I-Smad7 transfection/overexpression. Furthermore, I-Smad7 overexpression was associated with a significant increase and decrease in expression of p27 and phospho-Rb protein, respectively, as well as reduced [(3)H]thymidine incorporation vs. Ad-LacZ-infected controls. We suggest that negative modulation of R-Smad phosphorylation by ectopic I-Smad7 may contribute to the downregulation of collagen in cardiac myofibroblasts and may suppress the proliferation of these cells. Thus treatments targeting the collagen deposition by overexpression of I-Smad7 may provide a new therapeutic strategy for cardiac fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号