首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relative weighting of characters used in taxonomic decisions is detected by comparison with taxonomic models in which characters are given equal weights. Classifications are analysed for implied distance inequalities between triplets of taxa, and the minimal weights applied to the distances between taxa necessary to satisfy these constraints are estimated. Weights acting as multipliers on interacting characters are compared with weight estimations: geometric parameters which depend upon the relative locations of the taxa in taxonomic space.  相似文献   

2.
1. New techniques for identifying the average taxonomic range of species assemblages were applied to an extensive dataset of bottom-dwelling fish in the coastal waters of NW Europe. These taxonomic distinctness indices provided much greater resolution than traditional diversity indices as they incorporated information on taxonomic relationships into an index which measures species dominance. Unlike standard measures of species richness and diversity, the mean value of these statistics is independent of sampling effort, and this allows objective comparisons to be made between samples from studies where sampling effort is not standardized.
2. A reduction in the average taxonomic range between the fauna of western waters of the UK and that of the southern North Sea was consistent with the general decline in species richness observed between these regions, and suggests that these two factors may be spatially positively correlated. Indices calculated for individual samples of fish on a local scale, however, did not all fit this trend.
3. Much of the variability in taxonomic diversity within the coastal waters of NW Europe was caused by the variable geographical distribution of the elasmobranchs. Of all the families which comprise the fish communities, this group has life-history characteristics which make it most susceptible to impact by commercial trawl fisheries.
4. The use of taxonomic distinctness measures provided additional insights, of relevance to biodiversity assessment, suggesting that they might usefully be applied to other aquatic and terrestrial fauna.  相似文献   

3.
Palynology provides the opportunity to make inferences on changes in diversity of terrestrial vegetation over long time scales. The often coarse taxonomic level achievable in pollen analysis, differences in pollen production and dispersal, and the lack of pollen source boundaries hamper the application of diversity indices to palynology. Palynological richness, the number of pollen types at a constant pollen count, is the most robust and widely used diversity indicator for pollen data. However, this index is also influenced by the abundance distribution of pollen types in sediments. In particular, where the index is calculated by rarefaction analysis, information on taxonomic richness at low abundance may be lost. Here we explore information that can be extracted from the accumulation of taxa over consecutive samples. The log-transformed taxa accumulation curve can be broken up into linear sections with different slope and intersect parameters, describing the accumulation of new taxa within the section. The breaking points may indicate changes in the species pool or in the abundance of high versus low pollen producers. Testing this concept on three pollen diagrams from different landscapes, we find that the break points in the taxa accumulation curves provide convenient zones for identifying changes in richness and evenness. The linear regressions over consecutive samples can be used to inter- and extrapolate to low or extremely high pollen counts, indicating evenness and richness in taxonomic composition within these zones. An evenness indicator, based on the rank-order-abundance is used to assist in the evaluation of the results and the interpretation of the fossil records. Two central European pollen diagrams show major changes in the taxa accumulation curves for the Lateglacial period and the time of human induced land-use changes, while they do not indicate strong changes in the species pool with the onset of the Holocene. In contrast, a central Swedish pollen diagram shows comparatively little change, but high richness during the early Holocene forest establishment. Evenness and palynological richness are related for most periods in the three diagrams, however, sections before forest establishment and after forest clearance show high evenness, which is not necessarily accompanied by high palynological richness, encouraging efforts to separate the two.  相似文献   

4.
Ammonite phylogeny has mainly been established based on a stratigraphic approach, with cladistics underconsidered. The main arguments against the use of cladistics are the supposed large amount of homoplasy and the small number of characters. Resolving the phylogeny of the Hildoceratidae (Early Jurassic) is especially challenging because of its large diversity and disparity. Many forms that have not been determined as closely related in previous studies exhibit very similar shapes. Moreover, some groups are morphologically very different, adding difficulties to building a unique coding scheme at a low taxonomic resolution (i.e. species). Here we propose an integrated coding scheme of the peristome shape and the ornamentation, allowing an increased level of comparison. The shape of the peristome is used as a new reference to locate ornamental features and propose new homology hypotheses. In total, 105 taxa have been analysed for 47 characters. We code continuous characters by their means and ranges ± one standard deviation. We test two weighting schemes: equal weights standardized by unit range and implied weighting with several concavity constants. This work has led to redefinition of the phylogenetic inclusivenesses of all the hildoceratid subfamilies. The new coding scheme based on peristome shapes provides the fewest homoplastic characters. The schemes appear promising to improve phylogenetic analyses in ammonoids as well as molluscs as a whole by creating a general coding framework.  相似文献   

5.
Summary It has been proposed that within rather broad habitat types the distribution and abundance of bird species may be more closely associated with plant taxonomic composition than with the structure and configuration of the vegetation. Birds from a sample of eight representative grassland habitats in middle and western North America are consistent with this hypothesis. Over half (55%) of the variation in bird community composition was associated with floristic variation, but only a third (35%) was associated with physiognomy. Separating the interacting effects of floristics and physiognomy from each other served to accentuate the difference between them with respect to the avifauna. It is postulated that bird species/plant taxa associations, especially within similar habitat types, are mediated by the specific food resources that different plant taxa provide. Summary indices such as diversity measures obscure the taxonomic information content of plant or animal assemblages, and the use of such indices has likely impeded detection of the relationships described here.  相似文献   

6.
Opinions split when it comes to the significance and thus the weighting of indel characters as phylogenetic markers. This paper attempts to test the phylogenetic information content of indels and nucleotide substitutions by proposing an a priori weighting system of non-protein-coding genes. Theoretically, the system rests on a weighting scheme which is based on a falsificationist approach to cladistic inference. It provides insertions, deletions and nucleotide substitutions weights according to their specific number of identical classes of potential falsifiers, resulting in the following system: nucleotide substitutions weight = 3, deletions of n nucleotides weight = (2n–1), and insertions of n nucleotides weight = (5n–1). This weighting system and the utility of indels as phylogenetic markers are tested against a suitable data set of 18S rDNA sequences of Diptera and Strepsiptera taxa together with other Metazoa species. The indels support the same clades as the nucleotide substitution data, and the application of the weighting system increases the corresponding consistency indices of the differentially weighted character types. As a consequence, applying the weighting system seems to be reasonable, and indels appear to be good phylogenetic markers.  相似文献   

7.
Traditional diversity indices summarize the information about the relative abundances of species within a community without regard to differences between species. However, intuitively, a community composed of dissimilar taxa is more diverse than a community composed of more similar taxa. Therefore, useful indices of diversity should account for taxonomic relations among species. In this paper, a new parametric diversity index that combines species relative abundances and their taxonomic distinctiveness is used to quantify the way in which soil fertilization affects the diversity of a garigue community on ultramafic soils of Tuscany (central Italy). Results show that, while ultramafic soils generally host plant communities of limited taxonomic diversity with respect to similar communities on other substrates, fertilization significantly enhances the biomass production of species that are not exclusive to ultramafic soils. As a consequence, if diversity is measured combining species relative abundances with their taxonomic distinctiveness, nutrient addition tends to increase the diversity of ultramafic communities.  相似文献   

8.
The present knowledge of flora of Siberia is quite insufficient, which is a considerable obstacle to the detection of its biodiversity for conserving the gene pool. Planning conservation measures should be focused not only on species, but also on intraspecific taxa and their phylogenetic uniqueness. In the absence of genetic data, available morphological and geographical methods should be used, so that, when it is impossible to establish the actual origin and relationship of taxa, the existing morphological diverstity is at least represented, as far as it is known to be based on genetic diversity. Phenetic maps can be of much use in the study of intraspecific morphological diversity. The estimation of geographic variability and morphological diversity, as well as the evaluation of territories, can be based on such maps. To represent adequately the biodiversity existing within poorly studied, presumably hybrid plant groups, until actual origin and relationship are known, they should probably be forcedly and provisionally considered as a special type of hybrid complexes, representing the unclear present day taxonomic situation. Such complexes could include populations and individuals with morphological characters of two or more different species, until the systematic position of such populations and individuals is further explored. Until the actual taxonomic status and relationship of the components are established, they could be regarded as subspecies permitted by the Code, or as certain recorded morphological deviations from the type, without assigning any taxonomic status to them--depending on the available data on variability and distribution. In the future, the resulting provisional information on morphological diversity would help to concentrate the efforts of biologists, in possession of the newest methods, on the most important objects, and serve as the scientific base for effective measures aimed at the conservation and management of the vast gene pool of the Siberian flora.  相似文献   

9.
In order to investigate the effects of different weighting methods on a phylogeny reconstruction based on DNA sequences and to evaluate the phylogenetic information content of various secondary structures, a fragment of the large ribosomal mitochondrial gene (16S) was sequenced from 13 species of New World monkeys, three species of catarrhines, and Tarsius. The data were analyzed cladistically without weighting characters or changes, and with different weighting methods: a priori differential weights for transitions and transversions, two variants of dynamic weighting for each kind and direction of change, and successive approximations, using both the character consistency index (CI) and the rescaled consistency index (RC). The results were compared with published trees constructed from nuclear sequences of ε-globins and morphological characters by different authors. The result of the analysis of the mtDNA data set with successive approximations, using the RC as weighting function, was the closest to the topology on which all molecular and morphological trees concur. Other relationships were unique to this tree. "Loops" were the type of secondary structure that showed maximum variation in sequence length and sites with the lowest character CI and RC. A large number of sites within loops showed high values for these indices, however, which suggests that uniform downweighting of these regions represents a large loss of phylogenetic information. Successive weighting, which assigns a weight for each particular character, seems to be a desirable alternative to this practice. We propose a new variant of dynamic weighting, which we call homoplasy-correcting dynamic weighting, that like dynamic weighting, is applicable to any kind of sequence, coding or noncoding.  相似文献   

10.
Species mapping is a useful conservation tool for predicting patterns of biological diversity, or identifying geographical areas of conservation significance. Mapping can also improve our understanding of the appropriateness of habitat areas for individual species. We outline a computer-based methodology, PREDICT, for the analysis of the habitat requirements of species in a combined GIS-statistical programming environment. The paper details the statistical background to the approach adopted, the program structure and input file information and then applies these techniques to bird data from Bioko Island, West Africa. It produces images and statistics that assess the potential of unstudied areas for wildlife for which presence/absence data and basic habitat information are available. Suitability for target species is determined within surveyed and non-surveyed squares by a form of weights of evidence. The program measures the degree of association between habitat factors and presence/absence of target species by means of 2 tests. The overall suitability weighting of each square, as the sum of all individual habitat factor weightings, is finally displayed in maps depicting areas of highly suitable, suitable, unsuitable and highly unsuitable habitat. Statistical relations between vegetation, rainfall and landscape features on Bioko Island and the location of 9 endemic bird taxa are presented herein. Final confirmation of the accuracy of predictions of the studied bird taxa will ensue from future field observations. However, in a series of misclassification tests of the program, actual distribution detection rate was in excess of 90%. The use of PREDICT can guide investigations of little known species in remote areas and provide a practical solution to identify areas of high rare species diversity in need of conservation.  相似文献   

11.
1. It is increasingly recognised that adequate measures of biodiversity should include information on the ‘relatedness’ of species within ecological assemblages, or the phylogenetic levels at which diversity is expressed. Taxonomic distinctness measures provide a series of indices to achieve this, which are independent of sample size. Taxonomic distinctness has been employed widely in marine systems, where it has been suggested that this index can provide a reliable measure of anthropogenic impact. 2. We tested the behaviour of three related taxonomic distinctiveness indices (Average Taxonomic Distinctness, Δ+; Variation in Taxonomic Distinctness, Λ+; and Total Taxonomic Distinctness, sΔ+) in relation to putative levels of anthropogenic impact in inland waters and their potential utility in environmental monitoring, using an extensive data set for aquatic beetles from the south‐east of the Iberian Peninsula. 3. Taxonomic distinctness measures were not able to identify human disturbance effects and there were no clear relationships between these new biodiversity measures and the disturbance level recorded at individual localities. Furthermore, the taxonomic distinctness measures used were apparently less sensitive to the effects of anthropogenic impact than other diversity metrics, such as species richness and rarity. 4. We conclude that taxonomic distinctness indices may not always perform as well as other metrics in the assessment of environmental quality. In addition, taxonomic distinctness measure should be interpreted with caution, as their performance and ability to detect anthropogenic disturbance may depend on the phylogenetic structure of sampled taxa within a region, and their evolutionary and ecological history.  相似文献   

12.
13.
De'ath  Glenn 《Plant Ecology》1999,144(2):191-199
It is widely accepted that reliable ordination of ecological data requires a strong linear or ordinal relationship between the dissimilarity of sites, based on species composition, and the ecological distance between them. Certain dissimilarity measures, having the property that they take a fixed maximum value when sites have no species in common, have been shown to be strongly correlated with ecological distance. For ecological gradients of moderate length (moderate beta diversity), such measures, in conjunction with non-metric multidimensional scaling, will reliably yield successful ordinations. However, as beta diversity increases, more sites have no species in common, and such measures invariably under-estimate ecological distance for such sites. Thus ordinations of data with high species turnover (high beta diversity) may fail.Extended dissimilarities are defined using an iterative adaptation of flexible shortest path adjustment applied to the matrix of dissimilarities with fixed maximum values. By means of theoretical argument and simulations, this is shown to lead to far stronger correlations between the adjusted site dissimilarity and ecological distance for ecological gradients of greater length than previously considered. Hence ordinations of extended dissimilarities, by means of either metric or non-metric scaling techniques, are shown to outperform corresponding ordinations of unadjusted dissimilarities, with the difference increasing with increasing beta diversity.  相似文献   

14.
The primary objective of this study was to determine whether total biodiversity (γ) is partitioned into within‐community (α) and among‐community (β) components differently for taxonomic and functional organization. I hypothesized that α diversity will contribute more to the functional organization of γ diversity and that β diversity will contribute more to the taxonomic organization of γ diversity. A secondary objective was to determine whether the relationship between taxonomic and functional diversity is scale dependent. Species abundance data was obtained from fisheries surveys conducted by the Texas Parks and Wildlife Dept that focused on least disturbed streams from 11 different ecoregions of Texas, including 62 localities from 18 drainages. Functional and taxonomic organization of assemblages was quantified with two different measures of biodiversity, including richness and the numbers equivalent of Shannon diversity. Scale‐dependent effects on these indices were assessed by multiplicatively partitioning γ into α and β components. The contribution of α and β components to γ diversity differed between functional and taxonomic organization and among different measures of biodiversity. Among‐community components were more influential in structuring the taxonomic organization of stream‐fish assemblages, whereas within‐community components were more important in structuring the functional organization of assemblages. The relationship between taxonomic and functional diversity differed between α and β components and between spatial scales. Indeed, ecological patterns not only change with spatial scale, but how they change is dependent on which aspect of biodiversity is considered.  相似文献   

15.
16.
Most ecological diversity indices summarize the information about the relative abundances of species without reflecting taxonomic differences between species. Nevertheless, in environmental conservation practice, data on species abundances are mostly irrelevant and generally unknown. In such cases, to summarize the conservation value of a given site, so‐called ‘taxonomic diversity’ measures can be used. Such measures are based on taxonomic relations among species and ignore species relative abundances. In this paper, bridging the gap between traditional biodiversity measures and taxonomic diversity measures, I introduce a parametric diversity index that combines species relative abundances with their taxonomic distinctiveness. Due to the parametric nature of the proposed index, the contribution of rare and abundant species to each diversity measure is explicit.  相似文献   

17.
The study of ecological perturbation gradients provides a unique opportunity to investigate the utility of various biocomplexity indices. The ability of four measures of biocomplexity (quadratic entropy, taxonomic entropy, total complexity and total diversity) and their components to quantify the nature and degree of perturbation in plant communities was assessed by how closely each measure reflected the trends in biocomplexity that are expected to occur along a gradient of decreasing perturbation. The measures were applied to two landscapes, located near Sudbury, Canada and Harjavalta, Finland, perturbed by nickel–copper smelter emissions. Taxonomic entropy was determined to be the most useful of the four measures as it has a clear information-theoretical meaning, the relative contributions of classical diversity and taxonomic information can be easily isolated, and its computation is straightforward relative to the other measures. Additionally, it is relatively insensitive to community evenness, thereby rendering it less sample-size dependant and a more appropriate measure to use for comparisons between studies as well as for conservation and restoration purposes.  相似文献   

18.
Many applications of diversity indices are only valid if they are first transformed into their equivalent number of species. These equivalent numbers of species can be multiplicatively partitioned into independent alpha, beta and gamma components, and can be formed into mathematically consistent similarity measures. The utility of beta diversity and similarity measures that incorporate information about the degree of ecological dissimilarity between species is becoming increasingly recognized. The concept of equivalent number of species is here extended to Rao’s quadratic entropy, opening the way to methods of diversity partitioning that take into account taxonomic or ecological differences between species.  相似文献   

19.
We assessed the performance of biological indices developed for invertebrate assemblages occurring in arid zone streams: a multimetric index (MMI) and an O/E index of taxonomic completeness. Our overall goal was to advance our understanding of the factors that affect performance and interpretation of biological indices. Our specific objectives were to (1) develop biological indices that are insensitive to natural environmental gradients, (2) develop a general method to determine if the biological potential of an assessed site is adequately represented by the population of reference sites, (3) develop a robust method to select metrics for inclusion in MMIs that ensures maximum independence of metrics, and (4) determine if a fundamental sample property (the evenness of taxa counts within a sample) affects index performance. Random Forest modeling revealed that both individual metrics and taxa composition were strongly associated with natural environmental heterogeneity, which meant both the MMI and O/E index needed to be based on site-specific expectations. We produced a precise, responsive, and ecologically robust MMI by using principal components analysis to identify 7 statistically independent metrics from a list of 31 candidate assemblage-level metrics. However, the O/E index we developed was relatively imprecise compared with O/E indices developed for other regions. This imprecision may be the consequence of low predictability in local taxa composition associated with the relatively high spatial isolation of aquatic habitats within arid regions. We were also able to assess the likelihood that the biological potential of assessed sites were adequately characterized by the population of reference sites by developing and applying a multivariate, nearest-neighbor test that determined if an assessed site occurred within the environmental space of the reference site network. This approach is robust and applicable to all biological indices. We also demonstrate that the evenness of taxa counts within a sample is positively related to estimates of sample taxa richness and thus the scores of both indices. The relationship between richness and sample evenness can potentially compromise inferences regarding biological condition, and post hoc adjustments for the effects of evenness on index scores might be desirable. Further improvements in the performance and interpretation of biological indices will require simultaneous consideration of the effects of incomplete sampling on characterization of biological assemblages and the physical and biological factors that influence community assembly.  相似文献   

20.
Oncocyclus irises endemic to Lebanon form a complex of three closely related taxa replacing each other over short geographical distances in a linear habitat. In order to characterize the appropriate taxonomic levels and to assess their conservation status, we investigated patterns of phenotypic variability and the partitioning of genetic variation within and among populations using random amplified polymorphic DNA (RAPD) markers. Multivariate analysis (principal components analysis and multiple correspondence analysis), based on 16 quantitative and six qualitative characters, revealed no separation between populations or taxa. Moreover, no morphological character could be used to define clear boundaries between populations/taxa. The genetic characterization revealed high levels of polymorphism and diversity (Hs). Principal components analysis showed population delimitations, but no groupings reflecting the currently defined taxa could be identified. Both morphological and genetic data showed that Lebanese oncocyclus irises could not be fitted into clear taxonomic boundaries. Consequences for conservation are discussed. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159 , 123–135.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号