首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Rhodanese has been utilized as a model enzyme for the study of protein structure-function relationships. The enzyme has recently been cloned and the recombinant enzyme is now available for investigation. However, prior to use in structure-function studies, the recombinant enzyme must be shown to have the same structure and activity as the bovine liver enzyme used in the previous studies. An immunological study of the conformations of these enzyme conformers is described. Three antibodies (two monoclonal and one polyclonal, site-directed antibody) were shown to detect distinct and nonoverlapping epitopes. The epitopes of the monoclonal antirhodanese antibodies (R207 and MAB11) were mapped to the same CNBr digest fragment of the amino terminal domain of rhodanese, and the epitope of the site-directed antibody prepared against the interdomain tether sequence of rhodanese (PAT-T1) was mapped to that region of rhodanese (residues 142–156). The rhodanese conformers were studied by monitoring the accessibility of the epitopes recognized by each antibody in each conformer using an indirect ELISA. None of the antibodies could detect its epitope on the purified liver enzyme. Two of the antibodies (R207 and PAT-T1) could also not detect their epitopes on the recombinant enzyme. However, MAB11 did detect a conformational difference between the natural and recombinant rhodanese conformers, indicating the conformational difference is localized in the first 73 amino acids of rhodanese. This difference presumably reflects the difference in the histories of the two enzymes and may be due to differences in enzyme folding, differences in the purification procedures, and differences in storage conditions—all of which could influence the final conformation of the enzyme.  相似文献   

2.
Two types of monoclonal antibodies (MABs) against human thyroid peroxidase (TPO) have been obtained, which interact with spatially separated conformational epitopes of the antigen (Ka values are in the range 10(8)-10(9) M(-1)). The binding site of MAB F8 is in the immunodominant region of the TPO molecule, in the vicinity of the autoantigenic determinants, whereas the epitope specific for MAB A1 lies outside this location. Both MABs retain the ability to form immune complexes after solid-phase immobilization and chemical modification with a biotin derivative. The above properties suggest that MABs A1 and F8 may be used in immunoaffinity chromatography (isolation and purification of TPO from natural sources) and immunoassays for determinations of TPO (in biological fluids) and TPO autoantibodies (in human blood serum).  相似文献   

3.
Five independent hybrids producing monoclonal antibodies to human plasma fibronectin have been obtained by fusing P3/X63-Ag8 myeloma cells with immune mouse splenocytes. The specificity of these monoclonal antibodies (MABs) for fibronectin was demonstrated by three independent tests: binding to the purified soluble molecule, immunofluorescence staining of insoluble extracellular matrices produced by endothelial cells in vitro, immunostaining of fibronectin tryptic peptides after separation on SDS-PAGE and transfer to nitrocellulose sheets. Two antibodies (MAB 29 and 52) recognized selectively human fibronectin while the others (MAB 5, 30 and 59) reacted also with plasma fibronectin from calf, hamster and chicken. Four distinct epitopes were recognized by the MABs studied. MAB 5, 30, 52 and 59 reacted with distinct antigenic sites, while MAB 29 and 52 bind to the same site. Antigenic fragments were identified by immunostaining of fibronectin tryptic peptides. MAB 5 reacted with a collagen binding fragment with a molecular weight of 120 K. In addition, each of the MAB 29, 30, 52 and 59 reacted with peptides with a molecular weight of 40 K that bind to gelatin. Since these antibodies do not inhibit fibronectin-collagen interaction, it is concluded that their corresponding epitopes are clustered in a region close, but not coincident, to the collagen binding site of fibronectin.  相似文献   

4.
Two types of monoclonal antibodies (MABs) against human thyroid peroxidase (TPO) have been obtained, which interact with spatially separated conformational epitopes of the antigen (K a values are in the range 108–109 M?1). The binding site of MAB F8 is in the immunodominant region of the TPO molecule, in the vicinity of the autoantigenic determinants, whereas the epitope specific for MAB A1 lies outside this location. Both MABs retain the ability to form immune complexes after solid-phase immobilization and chemical modification with a biotin derivative. The above properties suggest that MABs A1 and F8 may be used in immunoaffinity chromatography (isolation and purification of TPO from natural sources) and immunoassays for determinations of TPO (in biological fluids) and TPO autoantibodies (in human blood serum).  相似文献   

5.
For the first time, the enzyme rhodanese has been proteolytically cleaved to give species that most likely correspond to individual domains. This indicates cleavage can occur in the interdomain tether. Further, the conditions for cleavage show that availability of the susceptible bond(s) depends on conformational changes triggered by oxidative inactivation. Rhodanese, without persulfide sulfur (E), was oxidized consequent to incubation with phenylglyoxal, NADH, or hydrogen peroxide. The oxidized enzyme (Eox) was probed using the proteolytic enzymes endoproteinase glutamate C (V8), trypsin, chymotrypsin, or subtilisin. The proteolytic susceptibility of Eox, formed using hydrogen peroxide, was compared with that of E and the form of the enzyme containing transferred sulfur, ES. ES was totally refractory to proteolysis, while E was only clipped to a small extent by trypsin or V8 and not at all by chymotrypsin or subtilisin. Eox was susceptible to proteolysis by all the proteases used, and, although there were some differences among the proteolytic patterns, there was always a band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis corresponding to Mr = 16,500. This was the only band observed in addition to the parent species (Mr = 33,000) when Eox was digested with chymotrypsin, and conservation of total protein was observed after digestion up to 90 min. No additional species were observable on silver staining, although there was some indication that the band at 16,500 might be a doublet. The results are consistent with the occurrence of a conformational change after oxidation that results in increased exposure and/or flexibility of the interdomain tether which contains residues that meet the specificity requirements of the proteases used.  相似文献   

6.
The epitope structure of human alpha-fetoprotein (AFP) was studied using more than 50 monoclonal antibodies (MAB) to human AFP. These MAB obtained from various world laboratories of the TD-2 AFP Workshops of the International Society for Oncodevelopmental Biology and Medicine (ISOBM-1996-1998-2000) were analyzed by competitive immunoaffinity electrochromatography (IAE) on nitrocellulose membranes (NCM). Five types of interaction of the AFP–MAB complex with the MAB fixed on NCM were found: 1) complete neutralization; 2) partial neutralization; 3) unidirectional neutralization; 4) enhanced binding; 5) lack of interaction. By IAE, 51 MAB were found to recognize 23 different epitopes in the AFP molecule. Based on these findings, an epitope map of AFP was designed which consists of eight epitope clusters and eight individual epitopes. The epitope location is considered with respect to the conformational state of the AFP molecule. Possible causes of the five types of interaction found on neutralization are discussed.  相似文献   

7.
Eight hybridoma cell lines secreting monoclonal antibodies (MABs) directed to cell surface components of rat hepatocytes were isolated. The antigens of seven MABs were identified as glycosylated plasma membrane proteins. The presence of these glycoproteins on normal hepatocytes and hepatocellular carcinoma cells was analyzed. A semi-quantitative enzyme-linked immunosorbent assay revealed that only two MABs (Be 8.7, Ne 11.3) recognized proteins which were expressed not only in normal liver but also in chemically induced transplantable Morris hepatomas and hepatoma-derived cell lines. The expression of six antigens was found to be sensitive to transformation. The domain specificity of the MABs was determined by indirect immunofluorescence on sections of liver tissue containing neoplastic nodules. Three MABs (Be 8.4, Ne 11.1, Ne 11.3) specifically bound to the sinusoidal domain and two MABs (Be 9.2, De 13.4) to the bile canalicular domain. These five antigens were transformation-sensitive except for the glycoprotein recognized by the MAB Ne 11.3. Three MABs (Be 8.7, Be 9.1, De 13.2) also showed intracellular immunofluorescence. Two of the antigens (Be 9.1, De 13.2) were not present in hepatomas. The relative molar masses (Mr) of the glycoproteins were determined after protein immunoblotting and immunoprecipitation. Four MABs (Be 8.7, Be 9.1, Be 9.2, De 13.4) recognized antigens with a Mr of 110 000 but did not mutually cross-react. The antigen recognized by MAB De 13.4 was identified as the ectoenzyme dipeptidyl peptidase IV (EC 3.4.14.-).  相似文献   

8.
Actions of various chemical agents modeling immunoaffinity chromatography elution conditions caused structural changes of the components of human thyroid peroxidase (TPO) complexes with monoclonal antibodies (MABs) F8 and A1 whose antigenic determinants have a conformational nature and are located in the immunodominant region and a peripheral region of TPO, respectively. These changes became apparent in the circular dichroism and fluorescence spectra of TPO and both MABs as well as in the immunoassay. The effectiveness of the chemical reagents with respect to TPO desorption from an immobilized MAB decreased in the following order: 0.2 M ammonia (pH 11.5) > 0.1 M lithium 3,5-diiodosalycilate > 0.1 M glycine-HCl (pH 2.5) > 1 M NaI > 30% propylene glycol + 1 M NaCl > 30% propylene glycol > 1 M NaCl. At pH 11.5, the three-dimensional structure and immunoreactivity of TPO retained completely and only minor alterations of MAB analogical parameters took place, thus providing a high yield of the functional active human TPO and favoring repeated use of the immobilized MABs in immunoaffinity chromatography. The results may be used as a strategy for the optimization of various protein antigens immunoaffinity chromatography.  相似文献   

9.
The 15D3 mouse monoclonal antibody (mAb) binds an uncharacterized extracellular epitope of the ATP Binding Cassette (ABC) transporter human P-glycoprotein (Pgp). Depletion of cell plasma membrane cholesterol by using methyl-β-cyclodextrin or other chemically modified β-cyclodextrins decreased the Pgp binding affinity of 15D3 mAb. UIC2 mAb, which is known to distinguish two conformers of this ABC transporter, binds only a fraction of cell surface Pgps. UIC2 mAb non-reactive pools of Pgp can be identified with other extracellular mAbs such as 15D3. Cyclosporin A (CsA) can shift non-reactive Pgps into their UIC2-reactive conformation: a phenomenon called the “UIC2 shift”. Competition studies proposed these two mAbs share overlapping epitopes and can reveal conformational changes of Pgp that correlate (r = 0.97) with the cholesterol content of cells. An apparent increase in competition of these mAbs suggested a conformational change similar to those found in the presence of CsA. However, the reason turned out not to be the UIC2-shift because cholesterol removal from the plasma membrane (PM) reduced the amount of detectable Pgps by 15D3 mAb. This study showed that 15D3 mAb bound to a conformation sensitive epitope of Pgp that was responsive to PM cholesterol levels. These conformational changes were gradual and not as great as the changes observed between the two conformers recognized by the UIC2 mAb.  相似文献   

10.
ABSTRACT. In this study we have examined the distribution of epitopes defined by monoclonal antibodies raised against Trypanosoma cruzi amastigotes during the intraceullar life cycle of the parasite. We have raised monoclonal antibodies towards amastigote forms and performed preliminary immunochemical characterization of their reactivities. MAB 1D9, 3G8, 2B7, 3B9, and 4B9, and 4B9 react with carbohydrate epitopes of the parasite major surface glycoprotein—Ssp-4 defined by MAB 2C2 [5]: MAB 4B5 reacts with a noncarbohydrate epitope in all developmental stages of the parasite, and MAB 3B2 also detects a noncarbohydrate epitope preferentially in T. cruzi flagellared forms. Vero cells infected with tissue culture-derived trypomastigotes of clone D11 (G strain) were fixed at different times during the intraceullular proliferation of parasites, and processed for immjno-electron microscopy and confocal immunoflurescence with the different monoclonal antibodies. We observed that while the surface distribution of MAB 2C2 and 4B9 epitopes was uniform throughout the cycle, MAB 1D9, 3G8, and 2B7 reacted with cytoplasmic membrance-bound compartments of the amastigotes. MAB 3B9 displayed a unique surface dentate pattern in some amastigotes. MAB 4B5 recognized a curved-shaped structure at the flagellar pocket region in some intracellular amastigotes and localized to the membrane in dividing forms. In intracellular trypomastigotes, MAB 4B5 also displayed a punctate pattern near the flagellar pocket.  相似文献   

11.
Monoclonal antibodies were developed against cerebral ganglia (CG) of the mussel Mytilus edulis by the immunization of mice with unpurified homogenates of these organs. The screening protocol of hybridoma was based upon immunohistological observations of cytocentrifugated ganglia cells. A panel of 29 monoclonal antibodies (MABs) specific of CG epitopes was harvested and subsequently used for the immunocytochemical study of CG cells. Several subpopulations of ganglia cells were specifically revealed by MABs. Identification of epitopes involved in growth control was approached via the application of a bioassay allowing the assessment of protein synthesis stimulation. MAB 42 and 46 affected amino acid incorporation induced by CG extract. These results lead to the conclusion that the epitopes recognised by these antibodies are involved in growth control. An immunoenzymatic assay was performed with CG extracts for quantitative analyses of epitopes.  相似文献   

12.
Hybrid cell lines have been derived which produce monoclonal antibodies reacting with outer membrane protein I from Neisseria gonorrhoeae strain P9. The antibodies obtained showed variable reactivity with other strains but one antibody recognized an epitope present on all of the strains tested which expressed the protease sensitive protein IB. Purified IgG labelled with 125I was used in competitive radioimmunoassays with unlabelled antibody to investigate the spacial distribution of the epitopes recognized. Each pair of antibodies showed some degree of inhibition. The relative magnitude of inhibition suggested that the conserved epitope lies within a variable region containing other epitopes which determine the antigenic specificity of the protein. Western blotting of peptides derived by proteolytic digestion of protein IB revealed that the conserved epitope is located close to the chymotrypsin cleavage site within a 7000 Mr surface exposed region of the molecule.  相似文献   

13.
When the enzyme rhodanese was inactivated with hydrogen peroxide (H(2)O(2)), it underwent significant conformational changes, leading to an increased exposure of hydrophobic surfaces. Thus, this protein seemed to be an ideal substrate for GroEL, since GroEL uses hydrophobic interactions to bind to its substrate polypeptides. Here, we report on the facilitated reactivation (86%) of H(2)O(2)-inactivated rhodanese by GroEL alone. Reactivation by GroEL required a reductant and the enzyme substrate, but not GroES or ATP. Further, we found that GroEL interacted weakly and/or transiently with H(2)O(2)-inactivated rhodanese. A strong interaction with rhodanese was obtained when the enzyme was pre-incubated with urea, indicating that exposure of hydrophobic surfaces alone on oxidized rhodanese was not sufficient for the formation of a strong complex and that a more unfolded structure of rhodanese was required to interact strongly with GroEL. Unlike prior studies that involved denaturation of rhodanese through chemical or thermal means, we have clearly shown that GroEL can function as a molecular chaperone in the reactivation of an oxidatively inactivated protein. Additionally, the mechanism for the GroEL-facilitated reactivation of rhodanese shown here appears to be different than that for the chaperonin-assisted folding of chemically unfolded polypeptides in which a nucleotide and sometimes GroES is required.  相似文献   

14.
Extracellular polymeric substances (EPS) are one of the main components of the biofilm and perform important functions in the biofilm system. In this study, two membrane-aerated biofilms (MABs) were developed for the thin and thick biofilms under different surface loading rates (SLRs). Supplies of oxygen and substrates in the MAB were from two opposite directions. This counter diffusion of nutrients resulted in a different growth environment, in contrast to conventional biofilms receiving both oxygen and substrates from the same side. The compositions, distributions and physicochemical properties (solubility and bindability) of EPS in the MABs of different thicknesses under different SLRs were studied. The effect of dissolved oxygen (DO) concentration within the MAB on EPS properties and distribution was investigated. Experimental results showed the different biofilm thicknesses produced substantially different profiles of EPS composition and distribution. Soluble proteins were more dominant than soluble polysaccharides in the inner aerobic layer of the biofilms; in contrast, bound proteins were greater than bound polysaccharides in the outer anoxic or anaerobic layer of the biofilms. The biofilm-EPS matrix consisted mainly of bound EPS. Bound EPS exhibited a hump-shaped profile with the highest content occurring in an intermediate region in the thin MAB and relatively more uniformly in the one half of the biofilm close to the membrane side and then declined towards the biofilm-liquid interface in the thick MAB. The profiles of soluble EPS presented a similar declining trend from the membrane towards the outer region in both thin and thick MABs. The study suggested that not only EPS composition but also EPS distribution and properties (solubility and bindability) played a crucial role in controlling the cohesiveness and maintaining the structural stability and stratification of the MABs.  相似文献   

15.
Class II major histocompatibility complex (MHC) proteins bind peptides and present them at the cell surface for interaction with CD4+ T cells as part of the system by which the immune system surveys the body for signs of infection. Peptide binding is known to induce conformational changes in class II MHC proteins on the basis of a variety of hydrodynamic and spectroscopic approaches, but the changes have not been clearly localized within the overall class II MHC structure. To map the peptide-induced conformational change for HLA-DR1, a common human class II MHC variant, we generated a series of monoclonal antibodies recognizing the beta subunit that are specific for the empty conformation. Each antibody reacted with the empty but not the peptide-loaded form, for both soluble recombinant protein and native protein expressed at the cell surface. Antibody binding epitopes were characterized using overlapping peptides and alanine scanning substitutions and were localized to two distinct regions of the protein. The pattern of key residues within the epitopes suggested that the two epitope regions undergo substantial conformational alteration during peptide binding. These results illuminate aspects of the structure of the empty forms and the nature of the peptide-induced conformational change.  相似文献   

16.
Beef liver rhodanese can be modified covalently at the active site (Cys-247) either reversibly or irreversibly by sulfur, selenium, iodoacetate, and hydrogen peroxide. Each derivative shows an intrinsic fluorescence lower than that of the free enzyme. The reaction of rhodanese with iodoacetate or hydrogen peroxide is time-dependent and accompanied by enzyme inactivation, by the loss of one or two sulfhydryl groups, respectively, by quenching and bathochromic shift of fluorescence, and by an absorbance perturbation in the near UV. The latter findings are indicative for a displacement of some tryptophyl side chains from hydrophobic to hydrophilic environment. The fluorescence decays of the various rhodanese derivatives can be fitted by a double-exponential function with two lifetimes: a shorter one of 1-1.7 ns and a longer one of 2.8-4.6 ns. The S-loaded and Se-loaded rhodanese samples have proportionally shorter lifetimes and lower quantum yields. No such proportionality was observed for the iodoacetate-treated and for the hydrogen peroxide treated enzyme. These findings indicate that two different quenching mechanisms are operating in rhodanese derivatives, a long-range energy transfer from tryptophan to persulfide (or sulfoselenide) group and a static quenching accompanying a conformational change of the protein after modification of the active site.  相似文献   

17.
Highlights
1. Two monoclonal antibodies against newly emerged porcine deltacoronavirus nucleocapsid protein were prepared.
2. The epitopes that these two monoclonal antibodies recognized on nucleocapsid protein were identified.
3. The monoclonal antibody 6B7 recognized a linear epitope of N protein, while the 7F8 recognized a conformational epitope.
4. Conservation of the identified epitopes between different coronaviruses was analyzed.  相似文献   

18.
Aggregation of proteins is a major problem in their use as drugs and is also involved in a variety of pathological diseases. In this study, biophysical techniques were employed to investigate aggregate formation in the pharmaceutically important protein, recombinant human factor VIII (rhFVIII). Recombinant human factor VIII incubated in solution at 37 degrees C formed soluble aggregates as detected by molecular sieve chromatography and dynamic light scattering. This resulted in a corresponding loss of biological activity. Fluorescence and CD spectra of the thermally stressed rhFVIII samples did not, however, suggest significant differences in protein conformation. To identify conformational changes in rhFVIII that may be involved in rhFVIII aggregation, temperature and solutes were used to perturb the native structure of rhFVIII. Far-UV CD and FTIR studies of rhFVIII as a function of temperature revealed conformational changes corresponding to an increase in intermolecular beta-sheet content beginning at approximately 45 degrees C with significant aggregation observed above 60 degrees C. Fluorescence and DSC studies of rhFVIII also indicated conformational changes initiating between 45 and 50 degrees C. An increase in the exposure of hydrophobic surfaces was observed beginning at approximately 40 degrees C, as monitored by increased binding of the fluorescent probe, bis-anilinonaphthalene sulfonic acid (bis-ANS). Perturbation by various solutes produced several transitions prior to extensive unfolding of rhFVIII. In all cases, a common transition, characterized by an increase in the wavelength of the fluorescence emission maximum of rhFVIII from approximately 330 to 335 nm, was observed during thermal and solute perturbation of factor VIII. Moreover, this transition was correlated with an increased association of factor VIII upon incubation at 37 degrees C in the presence of various solutes. These results suggest that association of rhFVIII in solution was initiated by a small transition in the tertiary structure of the protein which produced a nucleating species that led to the formation of inactive soluble aggregates.  相似文献   

19.
Sera of human colonic carcinoma xenografted rnu/nu rats were used to immunize rnu/+rats in order to obtain an immune response against circulating human tumor-associated components. After fusion of rat spleen cells with mouse myeloma cells monoclonal antibody MAB 108 could be established which reacted with two 40 and 45 kD cytokeratins as well as with vimentin, with a soluble 37 kD protein apparently derived from the 45 kD protein and with a 37 kD protein released by tumor cells. The MAB 108-specific epitope was also detected in tissue polypeptide antigen (TPA), a human tumor-associated antigen originally described by Bj?rklund et al. (22).  相似文献   

20.
The oxidation of the activated form of recombinant coagulation factor VII (FVIIa) by hydrogen peroxide has been studied. The three predominant oxidation products observed at pH 7.5 have been characterized as methionine sulfoxide derivatives of the parent protein involving two of the four methionine residues of the protein, Met298 and Met306. We conclude that oxidation of FVIIa with hydrogen peroxide only affects methionine residues and selectively oxidizes those which are readily accessible to the solvent. The oxidation process has been studied in the pH range 3.5-9.5. The total rate of oxidation of FVIIa as well as the formation of the three oxidation products is consistent over the pH interval 7.5-9.5. However, under acidic conditions, significant variations have been observed indicating a conformational change of FVIIa. Oxidized FVIIa had the same amidolytic activity as the native protein. The binding to soluble tissue factor (TF) was weaker after oxidation as manifested by a threefold increase in dissociation constant and the amidolytic activity in complex with soluble TF was 80% compared to that of native FVIIa. In complex with lipid surface TF, the rate of factor X activation catalyzed by oxidized FVIIa was also reduced by approximately 20% compared to that of native FVIIa. However, native and oxidized FVIIa appeared to bind lipidated TF with indistinguishable affinities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号