首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cost-effective and efficient ethanol production from lignocellulosic materials requires the fermentation of all sugars recovered from such materials including glucose, xylose, mannose, galactose, and l-arabinose. Wild-type strains of Saccharomyces cerevisiae used in industrial ethanol production cannot ferment d-xylose and l-arabinose. Our genetically engineered recombinant S. cerevisiae yeast 424A(LNH-ST) has been made able to efficiently ferment xylose to ethanol, which was achieved by integrating multiple copies of three xylose-metabolizing genes. This study reports the efficient anaerobic fermentation of l-arabinose by the derivative of 424A(LNH-ST). The new strain was constructed by over-expression of two additional genes from fungi l-arabinose utilization pathways. The resulting new 424A(LNH-ST) strain exhibited production of ethanol from l-arabinose, and the yield was more than 40%. An efficient ethanol production, about 72.5% yield from five-sugar mixtures containing glucose, galactose, mannose, xylose, and arabinose was also achieved. This co-fermentation of five-sugar mixture is important and crucial for application in industrial economical ethanol production using lignocellulosic biomass as the feedstock.  相似文献   

2.
Trichoderma reesei Rut C-30 was grown on eight different natural or rare aldopentoses as the main carbon source and on mixtures of an aldopentose with d-glucose or lactose. The fungal cells consumed all aldopentoses tested, except l-xylose and l-ribose. The highest total xylanase and cellulase activities were achieved when cells were grown on l-arabinose as the main carbon source. The total xylanase activity produced by cells grown on l-arabinose was even higher than that produced by cells grown on an equal amount of lactose. In co-metabolism of d-glucose (15 g l–1) and l-arabinose (5 g l–1), the total volumetric and specific xylanase productivities were improved (derepressed) approximately 23- and 18-fold, respectively, compared to a cultivation on only d-glucose (20 g l–1). In a similar experiment, in which cells were grown on a mixture of lactose and l-arabinose, the xylanase productivity was approximately doubled, compared to a cultivation on only lactose. The cellulase productivities, however, were not improved by the addition of l-arabinose. Compared with a typical industrial fungal enzyme production process with lactose as the main carbon source, better volumetric and specific xylanase productivities were achieved both on a lactose/arabinose mixture and on a glucose/arabinose mixture.  相似文献   

3.
Summary The specific growth rate () during cultivation of Bacteroides polypragmatus in 2.51 batch cultures in 4–5% (w/v) l-arabinose medium was 0.23 h-1 while that in either d-xylose or d-ribose medium was lower (=0.19 h-1). Whereas growth on arabinose or xylose occurred after about 6–8 h lag period, growth on ribose commenced after a 30 h lag phase. The maximum substrate utilization rate for arabinose, ribose and xylose in media with an initial substrate concentration of 4–5% (w/v) was 0.77, 0.76, and 0.60 g/l/h respectively. In medium containing a mixture of glucose, arabinose, and xylose, the utilization of all three substrates occurred concurrently. The maximum amount of ethanol produced after 72 h growth in 4–5% (w/v) of arabinose, xylose, and ribose was 9.4, 6.5, and 5.3 g/l, respectively. The matabolic end products (mol/mol substrate) of growth in 4.4% (w/v) xylose medium were 0.73 ethanol, 0.49 acetate, 1.39 CO2, 1.05 H2, and 0.09 butyrate.National Research Council of Canada No. 23406  相似文献   

4.
In the fed-batch culture of glycerol using a metabolically engineered strain of Escherichia coli, supplementation with glucose as an auxiliary carbon source increased lycopene production due to a significant increase in cell mass, despite a reduction in specific lycopene content. l-Arabinose supplementation increased lycopene production due to increases in cell mass and specific lycopene content. Supplementation with both glucose and l-arabinose increased lycopene production significantly due to the synergistic effect of the two sugars. Cell growth by the consumption of carbon sources was related to endogenous metabolism in the host E. coli. Supplementation with l-arabinose stimulated only the mevalonate pathway for lycopene biosynthesis and supplementation with both glucose and l-arabinose stimulated synergistically only the mevalonate pathway. In the fed-batch culture of glycerol with 10 g l−1 glucose and 7.5 g l−1 l-arabinose, the cell mass, lycopene concentration, specific lycopene content, and lycopene productivity after 34 h were 42 g l−1, 1,350 mg l−1, 32 mg g cells−1, and 40 mg l−1 h−1, respectively. These values were 3.9-, 7.1-, 1.9-, and 11.7-fold higher than those without the auxiliary carbon sources, respectively. This is the highest reported concentration and productivity of lycopene.  相似文献   

5.
myo-Inositol-linked glucogenesis in germinated lily (Lilium longiflorum Thunb., cv. Ace) pollen was investigated by studying the effects of added l-arabinose or d-xylose on metabolism of myo-[2-3H]inositol and by determining the distribution of radioisotope in pentosyl and hexosyl residues of polysaccharides from pollen labeled with myo-[2-14C]inositol, myo-[2-3H]inositol, l-[5-14C]arabinose, and d-[5R,5S-3H]xylose.  相似文献   

6.
Summary Radiochemical studies of Populus tremuloides xylem tissue administered l-[1-3H]arabinose, d-[1-3H]glucose, and d-[6-3H]glucose demonstrate that l-[1-3H]arabinose is an excellent precursor for pentosan in this tissue. Transverse sections of first-year xylem (from cambial zone to pith) were examined by light and electron microscope autoradiography. Relatively large amounts of labeled pentosan are found in parenchyma cell walls, including the protective layer of ray parenchyma. Computeraided analyses of grain distributions in electron micrographs of cell walls of individual fibers localized the labeled wall components after different periods of incubation by comparison to model behavior. These analyses indicate that pentosan is added to the secondary cell wall of developing fibers by an appositional mechanism.  相似文献   

7.
An -l-arabinofuranosidase produced by the fungusAspergillus awamori had molecular mass of approximately 64 kDa on sodium dodecyl sulphate/polyacrylamide gel electrophoresis (SDS-PAGE) and was optimally active at pH 4.6 and 50°C. The enzyme, which chromatographed as a single component on SDS-PAGE, appeared to consist of two iso-enzymes of pI 3.6 and 3.2. Acting in isolation, the -l-arabinofuranosidase had only a very limited capacity to releasel-arabinose (less than 11%) directly from arabinoxylans that had been extracted from a number of plant cell wall preparations using 18% alkali, but a much higher proportion of thel-arabinose (46%) was released from a wheat straw arabinoxylan that had been isolated by steam treatment. There was a marked synergistic effect between the -l-arabinofuranosidase and an endo-(1 4)--d-xylanase produced byA. awamori in both the rate and extent of the release ofl-arabinose from both oat straw and wheat straw arabinoxylans, suggesting thatl-arabinose-substituted oligosaccharides generated by the endoxylanase action were better substrates for enzyme action. A novel property of the -l-arabinofurasidase was its capacity to release a substantial proportion (42%) of feruloyll-arabinose from intact wheat straw arabinoxylan. The concerted action of the -l-arabinofuranosidase and endoxylanase released 71% of the feruloyll-arabinose and 69% of thep-coumaroyll-arabinose substituents from the wheat straw arabinoxylan.  相似文献   

8.
This research explores the impacts of a broad range of supplemental carbon sources on growth and development of Arabidopsis thaliana. Parameters measured include dark-germinated hypocotyl length, light-germinated root growth, rosette growth, chlorophyll concentration and anthocyanin content. Treatment sugars include sucrose, maltose, d-glucose, d-fructose, l-arabinose, l-fucose, d-galactose, d-mannose, l-rhamnose and d-xylose each supplied at 4, 20 or 100 mM. This comparison of the effect of different carbon sources on multiple parameters and under identical conditions showed that every carbon source had unique qualitative and quantitative effects on Arabidopsis growth and development. Root growth was particularly sensitive to supplemental carbon source. Growth on 100 mM sucrose, maltose, glucose or xylose stimulated root growth by ~100%. Growth on arabinose, fucose, galactose, mannose or rhamnose inhibited root growth by 50% or more. Several sugars that strongly inhibited root growth had either no effect (galactose and fucose) or a positive effect (arabinose) on hypocotyl elongation and rosette growth. Rhamnose was the only carbon source that inhibited hypocotyl elongation across all concentrations. Sucrose, maltose, glucose, fructose, arabinose or xylose stimulated rosette growth by ~50%. Chlorophyll content was strongly reduced by mannose while sucrose, glucose, galactose and rhamnose caused smaller reductions. Anthocyanin accumulation was strongly induced by both galactose and mannose. Only mannose impacted all parameters across all concentrations. Based on these data it can be concluded that the effect of each carbon source on Arabidopsis growth and development is specific in terms of both magnitude and the parameters impacted.  相似文献   

9.
Graminaceous primary cell walls contain polysaccharides to which are esterified feruloyl residues. Ester biosynthesis is highly specific and the present experiments were performed to ascertain the likely site of feruloylation in living grass cell cultures. Cell cultures of tall fescue grass (Festuca arundinacea Schreber) incorporated exogenous l-[1-3H]arabinose into polymers at a linear rate after a short lag of approx. 1–3 min. Radiolabelled polymers did not start to accumulate in the culture medium until 20–35 min after [3H]arabinose was supplied. However, polymer-bound feruloyl-arabinose residues began to accumulate 3H after a lag of 1–3 min. Assuming that the onset of secretion of radiolabelled polymers into the medium indicates the time before which essentially all the radiolabel was internal to the plasma membrane, the results show that the polysaccharide-bound [3H]arabinose residues must have been feruloylated within the protoplast.Abbreviations AIR alcohol-insoluble residue - BAW butan1-ol/acetic acid/water (12:3:5 by volume) - BEW butan-1-ol/ ethanol/water (20:5:11 by volume) - EPW ethyl acetate/pyridine/ water (8:2:1 by volume) - RAra Chromatographic mobility relative to that of l-arabinose We are very grateful to Mr. Gundolf Wende for assistance with the characterisation of the feruloyl esters. K.E.M. is funded by a studentship from the Science and Engineering Research Council in collaboration with Zeneca Agrochemicals.  相似文献   

10.
The induction of extracellular arabinases by pentose sugars and polyols generated by the metabolic pathway of l-arabinose and d-xylose catabolism in Aspergillus niger was investigated. Induction occurred with l-arabinose and l-arabitol but not with d-xylose or xylitol. l-arabitol in particular was found to be a good inducer for -l-arabinofuranosidase and endo-arabinase activities. Western blotting analysis showed both -l-arabinofuranosidase A and B to be present. No induction was observed using d-arabitol. Unlike the wild type A. niger N402 strain, the A. niger xylulose kinase negative mutant N572 also showed induction of -l-arabinofuranosidases A and B and endo-arabinase activity on d-xylose and xylitol. This is due to metabolic conversion of these compounds leading to the accumulation of both xylitol and l-arabitol in this mutant, the latter of which then acts as inducer. The induction of the two -l-arabinofuranosidases and endo-arabinase is under the control of two regulatory systems namely pathway specific induction and carbon catabolite repression. Under derepressing conditions in the wild type only -l-arabinofuranosidase B could be detected by Western blotting analysis. This indicates that -l-arabinofuranosidase B is of importance in the initiation of specific induction of the various arabinose activities in A. niger grown on arabinose containing structural polysaccharides.Abbreviations PNA p-nitrophenyl--l-arabinofuranoside  相似文献   

11.
Recombinant Escherichia coli harboring the l-arabinose isomerase (BLAI) from Bacillus licheniformis was used as a biocatalyst to produce l-ribulose in the presence of borate. Effects of substrate concentration, the borate to l-arabinose ratio, pH, and temperature on the conversion of l-arabinose to l-ribulose were investigated. l-Ribulose production was efficient when pH was higher than 9 and temperature was higher than 50 °C. Borate addition to the reaction mixture was essential for high conversion of l-arabinose to l-ribulose as it resulted in an equilibrium shift in favor of the product. Under the optimal conditions determined by response surface methodology, the E. coli harboring BLAI produced 375 g l−1 L-ribulose from 500 g l−1 l-arabinose at a reaction time of 60 min, corresponding to a conversion yield of 75% and productivity of 375 g l−1 h−1. When the resting recombinant E. coli cells were recycled, 85% of the yield was obtained even after seven cycles of reuse. The productivity and final concentration of l-ribulose obtained in the present study were the highest yet reported.  相似文献   

12.
l-Arabinose is the second most abundant pentose beside d-xylose and is found in the plant polysaccharides, hemicellulose and pectin. The need to find renewable carbon and energy sources has accelerated research to investigate the potential of l-arabinose for the development and production of biofuels and other bioproducts. Fungi produce a number of extracellular arabinanases, including α-l-arabinofuranosidases and endo-arabinanases, to specifically release l-arabinose from the plant polymers. Following uptake of l-arabinose, its intracellular catabolism follows a four-step alternating reduction and oxidation path, which is concluded by a phosphorylation, resulting in d-xylulose 5-phosphate, an intermediate of the pentose phosphate pathway. The genes and encoding enzymes l-arabinose reductase, l-arabinitol dehydrogenase, l-xylulose reductase, xylitol dehydrogenase, and xylulokinase of this pathway were mainly characterized in the two biotechnological important fungi Aspergillus niger and Trichoderma reesei. Analysis of the components of the l-arabinose pathway revealed a number of specific adaptations in the enzymatic and regulatory machinery towards the utilization of l-arabinose. Further genetic and biochemical analysis provided evidence that l-arabinose and the interconnected d-xylose pathway are also involved in the oxidoreductive degradation of the hexose d-galactose.  相似文献   

13.
To develop a new enzymatic xylose-to-xylitol conversion, deeper knowledge on the regulation of xylose reductase (XR) is needed. To this purpose, a new strain of Debaryomyces hansenii (UFV-170), which proved a promising xylitol producer, was cultivated in semi-synthetic media containing different carbon sources, specifically three aldo-hexoses (d-glucose, d-galactose and d-mannose), a keto-hexose (d-fructose), a keto-pentose (d-xylose), three aldo-pentoses (d-arabinose, l-arabinose and d-ribose), three disaccharides (maltose, lactose and sucrose) and a pentitol (xylitol). The best substrate was lactose on which cell concentration reached about 20 g l−1 dry weight (DW), while the highest specific growth rates (0.58–0.61 h−1) were detected on lactose, d-mannose, d-glucose and d-galactose. The highest specific activity of XR (0.24 U mg−1) was obtained in raw extracts of cells grown on d-xylose and harvested in the stationary growth phase. When grown on cotton husk hemicellulose hydrolyzates, cells exhibited XR activities five to seven times higher than on semi-synthetic media.  相似文献   

14.
Bacteroides vulgatus strain 8482 metabolizedd-arabinose by a mechanism involving a 32 (top to bottom) cleavage of the arabinose carbon skeleton. During growth in the presence of 1-14C-d-arabinose, acetate, propionate, and succinate were labeled, but during growth in the presence of 5-labeledd-arabinose, only labeled acetate and succinate were formed. The metabolism ofd-ribose by strain 8482 differed from that ford-arabinose. Strain 8482 converted glycolic acid and glycine to acetate and succinate, but not propionate, by a mechanism involving cleavage of the glycine and glycolic acid carbon skeletons and equilibration of carbons 1 and 2 of glycolic acid and glycine with nonequivalent metabolic pools. The metabolism ofd-arabinose,d-ribose,d-glycine, andd-glycolic acid by strain 8482 was similar, in some respects, to that ofBacteroides fragilis strain 2044, but differed substantially from the metabolism of the same substances byBacteroides ruminicola strain B14.  相似文献   

15.
Xylose reductase (XR) is a key enzyme in biological xylitol production, and most XRs have broad substrate specificities. During xylitol production from biomass hydrolysate, non-specific XRs can reduce l-arabinose, which is the second-most abundant hemicellulosic sugar, to the undesirable byproduct arabitol, which interferes with xylitol crystallization in downstream processing. To minimize the flux from l-arabinose to arabitol, the l-arabinose-preferring, endogenous XR was replaced by a d-xylose-preferring heterologous XR in Candida tropicalis. Then, Bacillus licheniformis araA and Escherichia coli araB and araD were codon-optimized and expressed functionally in C. tropicalis for the efficient assimilation of l-arabinose. During xylitol fermentation, the control strains BSXDH-3 and KNV converted 9.9 g l-arabinose l−1 into 9.5 and 8.3 g arabitol l−1, respectively, whereas the recombinant strain JY consumed 10.5 g l-arabinose l−1 for cell growth without forming arabitol. Moreover, JY produced xylitol with 42 and 16% higher productivity than BSXDH-3 and KNV, respectively.  相似文献   

16.
Yeasts that ferment both hexose and pentose are important for cost-effective ethanol production. We found that the soil yeast strain NY7122 isolated from a blueberry field in Tsukuba (East Japan) could ferment both hexose and pentose (d-xylose and l-arabinose). NY7122 was closely related to Candida subhashii on the basis of the results of molecular identification using the sequence in the D1/D2 domains of 26S rDNA and 5.8S-internal transcribed spacer region. NY7122 produced at least 7.40 and 3.86 g l−1 ethanol from 20 g l−1 d-xylose and l-arabinose within 24 h. NY7122 could produce ethanol from pentose and hexose sugars at 37°C. The highest ethanol productivity of NY7122 was achieved under a low pH condition (pH 3.5). Fermentation of mixed sugars (50 g l−1 glucose, 20 g l−1 d-xylose, and 10 g l−1 l-arabinose) resulted in a maximum ethanol concentration of 27.3 g l−1 for the NY7122 strain versus 25.1 g l−1 for Scheffersomyces stipitis. This is the first study to report that Candida sp. NY7122 from a soil environment could produce ethanol from both d-xylose and l-arabinose.  相似文献   

17.
Cells of proso millet (Panicum miliaceum L. cv Abarr) in liquid culture and leaves of maize seedlings (Zea mays L. cv LH51 × LH1131) readily incorporated d-[U-14C]glucose and l-[U-14C]arabinose into soluble and cell wall polymers. Radioactivity from arabinose accumulated selectively in polymers containing arabinose or xylose because a salvage pathway and C-4 epimerase yield both nucleotide-pentoses. On the other hand, radioactivity from glucose was found in all sugars and polymers. Pulse-chase experiments with proso millet cells in liquid culture demonstrated turnover of buffer soluble polymers within minutes and accumulation of radioactive polymers in the cell wall. In leaves of maize seedlings, radioactive polymers accumulated quickly and peaked 30 hours after the pulse then decreased slowly for the remaining time course. During further growth of the seedlings, radioactive polymers became more tenaciously bound in the cell wall. Sugars were constantly recycled from turnover of polysaccharides of the cell wall. Arabinose, hydrolyzed from glucuronoarabinoxylans, and glucose, hydrolyzed from mixed-linkage (1→3, 1→4)β-d-glucans, constituted most of the sugar participating in turnover. Arabinogalactans were a large portion of the buffer soluble (cytoplasmic) polymers of both proso millet cells and maize seedlings, and these polymers also exhibited turnover. Our results indicate that the primary cell wall is not simply a sink for various polysaccharide components, but rather a dynamic compartment exhibiting long-term reorganization by turnover and alteration of specific polymers during development.  相似文献   

18.
A trisaccharide consisting of two d-xylose units and one l-arabinose unit, and a tetrasaccharide consisting of three d-xylose units and one l-arabinose unit were isolated from the hydrolyzate of rice-straw arabinoxylan by the xylanase I produced by Asp. niger.

The structures of the trisaccharide and the tetrasaccharide were determined to be 31-α-l-arabinofuranosylxylobiose ([α]d? 80°) and 31-α-l-arabinofuranosylxylotriose ([α]d? 84°), respectively, by chemical and enzymic methods.

According to the structures of two arabinose-xylose mixed oligosaccharides, it was shown that the rice-straw arabinoxylan is composed of chain of 1,4-linked βd-xylopyranose residues and some of xylose residues have side-chain of 1,3-linked α-l-arabinofuranose.  相似文献   

19.
The metabolism of myo-inositol-2-14C, d-glucuronate-1-14C, d-glucuronate-6-14C, and l-methionine-methyl-14C to cell wall polysaccharides was investigated in excised root-tips of 3 day old Zea mays seedlings. From myo-inositol, about one-half of incorporated label was recovered in ethanol insoluble residues. Of this label, about 90% was solubilized by treatment, first with a preparation of pectinase-EDTA, then with dilute hydrochloric acid. The only labeled constituents in these hydrolyzates were d-galacturonic acid, d-glucuronic acid, 4-O-methyl-d-glucuronic acid, d-xylose, and l-arabinose, or larger oligosaccharide fragments containing these units. Medium external to excised root-tips grown under sterile conditions in myo-inositol-2-14C contained labeled polysaccharide.  相似文献   

20.
l-Arabinose utilization by the yeasts Candida arabinofermentans PYCC 5603T and Pichia guilliermondii PYCC 3012 was investigated in aerobic batch cultures and compared, under similar conditions, to d-glucose and d-xylose metabolism. At high aeration levels, only biomass was formed from all the three sugars. When oxygen became limited, ethanol was produced from d-glucose, demonstrating a fermentative pathway in these yeasts. However, pentoses were essentially respired and, under oxygen limitation, the respective polyols accumulated—arabitol from l-arabinose and xylitol from d-xylose. Different l-arabinose concentrations and oxygen conditions were tested to better understand l-arabinose metabolism. P. guilliermondii PYCC 3012 excreted considerably more arabitol from l-arabinose (and also xylitol from d-xylose) than C. arabinofermentans PYCC 5603T. In contrast to the latter, P. guilliermondii PYCC 3012 did not produce any traces of ethanol in complex l-arabinose (80 g/l) medium under oxygen-limited conditions. Neither sustained growth nor active metabolism was observed under anaerobiosis. This study demonstrates, for the first time, the oxygen dependence of metabolite and product formation in l-arabinose-assimilating yeasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号