共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Climate change and emerging infectious diseases 总被引:5,自引:0,他引:5
Epstein PR 《Microbes and infection / Institut Pasteur》2001,3(9):747-754
The ranges of infectious diseases and vectors are changing in altitude, along with shifts in plant communities and the retreat of alpine glaciers. Additionally, extreme weather events create conditions conducive to clusters of insect-, rodent- and water-borne diseases. Accelerating climate change carries profound threats for public health and society. 相似文献
3.
Models of virulence evolution generally consider the outcome of competition between resident and mutant parasite strains at or near endemic equilibrium. Less studied is what happens during the initial phases of invasion and adaptation. Understanding initial adaptive dynamics is particularly important in the context of emerging diseases in wildlife and humans, for which rapid and accurate intervention may be of the essence. To address the question of virulence evolution in emerging diseases, we employ a simple stochastic modeling framework. As is intuitive, the pathogen strains most likely to emerge are those with the highest net reproductive rates (R0). We find, however, that stochastic events shape the properties of emerging pathogens in sometimes unexpected ways. First, the mean virulence of emerging pathogens is expected to be larger in dense host populations and/or when transmission is high, due to less restrictive conditions for the spread of the pathogen. Second, a positive correlation between average virulence and transmissibility emerges due to a combination of drift and selection. We conclude that at least in the initial phases of adaptation, special assumptions about constraints need not be invoked to explain some virulence-transmission correlations and that virulence management practices should consider how residual variation in transmission and virulence can be selected to reduce the prevalence and/or virulence of emerging infectious diseases. 相似文献
4.
To control emerging infectious diseases like SARS, it is necessary to resort to basic control measures that limit exposures to infectious individuals. These measures include isolating cases at diagnosis, quarantining household members and tracing contacts of diagnosed cases, providing the community with advice on how to reduce exposures, and closing schools. To justify such intervention it is important to understand how well each of these measures helps to limit transmission. In this paper, we determine the effect of a number of different interventions on the effective reproduction number and estimate requirements to achieve elimination of the infectious disease. We find that the strategy of tracing and quarantining contacts of diagnosed cases can be very successful in reducing transmission. 相似文献
5.
6.
正During the 2013–2016 Ebola epidemic in West Africa,there was a special team as part of an international effort working in field.This was the Chinese aid team deployed to West Africa as a multidisciplinary group composed of experienced virologists,epidemiologists and physicians.As part of an international effort,they participated in the control of Ebola virus disease from the very beginning until the end of the 相似文献
7.
Besselsen DG Franklin CL Livingston RS Riley LK 《ILAR journal / National Research Council, Institute of Laboratory Animal Resources》2008,49(3):277-290
Rodent parvoviruses, Helicobacter spp., murine norovirus, and several other previously unknown infectious agents have emerged in laboratory rodents relatively recently. These agents have been discovered serendipitously or through active investigation of atypical serology results, cell culture contamination, unexpected histopathology, or previously unrecognized clinical disease syndromes. The potential research impact of these agents is not fully known. Infected rodents have demonstrated immunomodulation, tumor suppression, clinical disease (particularly in immunodeficient rodents), and histopathology. Perturbations of organismal and cellular physiology also likely occur. These agents posed unique challenges to laboratory animal resource programs once discovered; it was necessary to develop specific diagnostic assays and an understanding of their epidemiology and transmission routes before attempting eradication, and then evaluate eradication methods for efficacy. Even then management approaches varied significantly, from apathy to total exclusion, and such inconsistency has hindered the sharing and transfer of rodents among institutions, particularly for genetically modified rodent models that may not be readily available. As additional infectious agents are discovered in laboratory rodents in coming years, much of what researchers have learned from experiences with the recently identified pathogens will be applicable. This article provides an overview of the discovery, detection, and research impact of infectious agents recently identified in laboratory rodents. We also discuss emerging syndromes for which there is a suspected infectious etiology, and the unique challenges of managing newly emerging infectious agents. 相似文献
8.
9.
E Nicastri E Girardi G Ippolito 《Journal of biological regulators and homeostatic agents》2001,15(3):212-217
In the 1960s and 1970s, many public health experts assumed that infectious diseases could at long last be conquered as had occurred with smallpox. In the last two decades, reports warned that infectious diseases were clearly not a problem of the past. They could not be considered as a unique or isolated event of wild and faraway regions, but penetrated every corner of the globe. Emerging infectious diseases have been recently described as clinically distinct conditions whose incidence in humans has increased regionally or worldwide within the past two decades. Emergence may be due to the introduction of new agents to or the recognition of an existing disease that has gone undetected, and re-emergence may describe the re-appearance of known diseases after a decline in incidence. In this article a global, multidisciplinary and integrated approach in different fields of demography, epidemiology, economy, ecology, anthropology and environment at science has been considered to describe the different determinants responsible for the emergence and re-emergence of infectious diseases. 相似文献
10.
Hao Rongzhang Liu Yuqi Shen Wanzhu Zhao Rongtao Jiang Bo Song Hongbin Yan Muyang Ma Hui 《中国科学:生命科学英文版》2022,65(8):1504-1516
Science China Life Sciences - Emerging infectious diseases, such as COVID-19, continue to pose significant threats to human beings and their surroundings. In addition, biological warfare,... 相似文献
11.
12.
In this article, we summarize the major scientific developments of the last decade on the transmission of infectious agents in multi-host systems. Almost sixty percent of the pathogens that have emerged in humans during the last 30-40 years are of animal origin and about sixty percent of them show an important variety of host species besides humans (3 or more possible host species). In this review, we focus on zoonotic infections with vector-borne transmission and dissect the contrasting effects that a multiplicity of host reservoirs and vectors can have on their disease dynamics. We discuss the effects exerted by host and vector species richness and composition on pathogen prevalence (i.e., reduction, including the dilution effect, or amplification). We emphasize that, in multiple host systems and for vector-borne zoonotic pathogens, host reservoir species and vector species can exert contrasting effect locally. The outcome on disease dynamics (reduced pathogen prevalence in vectors when the host reservoir species is rich and increased pathogen prevalence when the vector species richness increases) may be highly heterogeneous in both space and time. We then ask briefly how a shift towards a more systemic perspective in the study of emerging infectious diseases, which are driven by a multiplicity of hosts, may stimulate further research developments. Finally, we propose some research avenues that take better into account the multi-host species reality in the transmission of the most important emerging infectious diseases, and, particularly, suggest, as a possible orientation, the careful assessment of the life-history characteristics of hosts and vectors in a community ecology-based perspective. 相似文献
13.
14.
A number of structural genomics/proteomics initiatives are focused on bacterial or viral pathogens. In this article, we will review the progress of structural proteomics initiatives targeting the SARS coronavirus (SARS-CoV), the etiological agent of the 2003 worldwide epidemic that culminated in approximately 8,000 cases and 800 deaths. The SARS-CoV genome encodes 28 proteins in three distinct classes, many of them with unknown function and sharing low similarity to other proteins. The structures of 16 SARS-CoV proteins or functional domains have been determined to date. Remarkably, eight of these 16 proteins or functional domains have novel folds, indicating the uniqueness of the coronavirus proteins. The results of SARS-CoV structural proteomics initiatives will have several profound biological impacts, including elucidation of the structure-function relationships of coronavirus proteins; identification of targets for the design of anti-viral compounds against SARS-CoV and other coronaviruses; and addition of new protein folds to the fold space, with further understanding of the structure-function relationships for several new protein families. We discuss the use of structural proteomics in response to emerging infectious diseases such as SARS-CoV and to increase preparedness against future emerging coronaviruses. 相似文献
15.
自20世纪70年代初以来,全球有大量的新发传染病出现,仅有重要影响的新发传染病就达45种以上,其中有至少3个团队因相关病原体的发现获得了诺贝尔医学或生理学奖;期间,不论我国处于"文化大革命"时期,还是处于改革开放和经济社会快速发展时期,总有一批科学家战斗在新发传染病应对的第一线。特别是那些在中国新发传染病研究领域的开拓者们,他们努力跟踪国内外传染病疫情进展,进行着新发传染病及其病原体的证实工作。本文借祝贺《微生物学通报》创刊40周年之际,对这些科学家在此期间的开创性工作进行初步整理,并加以简要评述;历史不会忘记他们为我国的医学事业所做出的重要贡献,也会激励一代又一代的微生物学和医学工作者。 相似文献
16.
The historical biogeography of co-evolution: emerging infectious diseases are evolutionary accidents waiting to happen 总被引:1,自引:1,他引:1
Ecological fitting refers to interspecific associations characterized by ecologically specialized, yet phylogenetically conservative, resource utilization. During periods of biotic expansion, parasites and hosts may disperse from their areas of origin. In conjunction with ecological fitting, this sets the stage for host switching without evolving novel host utilization capabilities. This is the evolutionary basis of emerging infectious diseases (EIDs). Phylogenetic analysis for comparing trees (PACT) is a method developed to delineate both general and unique historically reticulated and non‐reticulated relationships among species and geographical areas, or among parasites and their hosts. PACT is based on ‘Assumption 0’, which states that all species and all hosts in each input phylogeny must be analysed without modification, and the final analysis must be logically consistent with all input data. Assumption 0 will be violated whenever a host or area has a reticulated history with respect to its parasites or species. PACT includes a Duplication Rule, by which hosts or areas are listed for each co‐evolutionary or biogeographical event affecting them, which satisfies Assumption 0 even if there are reticulations. PACT maximizes the search for general patterns by using Ockam's Razor – duplicate only enough to satisfy Assumption 0. PACT applied to the host and geographical distributions of members of two groups of parasitic helminths infecting anthropoid primates indicates a long and continuous association with those hosts. Nonetheless, c. 30% of the host associations are due to host switching. Only one of those involves non‐primate hosts, suggesting that most were constrained by resource requirements that are phylogenetically conservative among primates (ecological fitting). In addition, most of the host switches were associated with episodes of biotic expansion, also as predicted by the ecological fitting view of EIDs. 相似文献
17.
Donald T. McKnight Lin Schwarzkopf Ross A. Alford Deborah S. Bower Kyall R. Zenger 《Conservation Genetics》2017,18(6):1235-1245
Emerging infectious diseases threaten the survival of many species and populations by causing large declines and altering life history traits and population demographics. Therefore, it is imperative to understand how diseases impact wildlife populations so that effective management strategies can be planned. Many studies have focused on understanding the ecology of host/pathogen interactions, but it is equally important to understand the effects on host population genetic structure. In this review, we examined the literature on how infectious diseases influence host population genetic makeup, with a particular focus on whether or not they alter gene flow patterns, reduce genetic variability, and drive selection. Although the results were mixed, there was evidence for all of these outcomes. Diseases often fragmented populations into small, genetically distinct units with limited gene flow among them. In some cases, these isolated populations showed the genetic hallmarks of bottlenecks and inbreeding, but in other populations, there was sufficient gene flow or enough survivors to prevent genetic drift and inbreeding. Direct evidence of diseases acting as selective pressures in wild populations is somewhat limited, but there are several clear examples of it occurring. Also, several studies found that gene flow can impact the evolution of small populations either beneficially, by providing them with variation, or detrimentally, by swamping them with alleles that are not locally adaptive. Thus, differences in gene flow levels may explain why some species adapt while others do not. There are also intermediate cases, whereby some species may adapt to disease, but not at a rate that is meaningful for conservation purposes. 相似文献
18.
McMichael AJ 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2004,359(1447):1049-1058
During the processes of human population dispersal around the world over the past 50 000-100 000 years, along with associated cultural evolution and inter-population contact and conflict, there have been several major transitions in the relationships of Homo sapiens with the natural world, animate and inanimate. Each of these transitions has resulted in the emergence of new or unfamiliar infectious diseases.The three great historical transitions since the initial advent of agriculture and livestock herding, from ca. 10 000 years ago, occurred when: (i) early agrarian-based settlements enabled sylvatic enzootic microbes to make contact with Homo sapiens; (ii) early Eurasian civilizations (such as the Greek and Roman empires, China and south Asia) came into military and commercial contact, ca. 3000-2000 years ago, swapping their dominant infections; and (iii) European expansionism, over the past five centuries, caused the transoceanic spread of often lethal infectious diseases. This latter transition is best known in relation to the conquest of the Americas by Spanish conquistadores, when the inadvertent spread of measles, smallpox and influenza devastated the Amerindian populations.Today, we are living through the fourth of these great transitional periods. The contemporary spread and increased lability of various infectious diseases, new and old, reflect the combined and increasingly widespread impacts of demographic, environmental, behavioural, technological and other rapid changes in human ecology. Modern clinical medicine has, via blood transfusion, organ transplantation, and the use of hypodermic syringes, created new opportunities for microbes. These have contributed to the rising iatrogenic problems of hepatitis C, HIV/AIDS and several other viral infections. Meanwhile, the injudicious use of antibiotics has been a rare instance of human action actually increasing 'biodiversity'.Another aspect of this fourth transition is that modern hyper-hygienic living restricts microbial exposure in early life. This, in the 1950s, may have contributed to an epidemic of more serious, disabling, poliomyelitis, affecting older children than those affected in earlier, more endemic decades. As with previous human-microbe transitions, a new equilibrial state may lie ahead. However, it certainly will not entail a world free of infectious diseases. Any mature, sustainable, human ecology must come to terms with both the need for, and the needs of, the microbial species that help to make up the interdependent system of life on Earth. Humans and microbes are not "at war"; rather, both parties are engaged in amoral, self-interested, coevolutionary struggle. We need to understand better, and therefore anticipate, the dynamics of that process. 相似文献
19.
Hui EK 《Microbes and infection / Institut Pasteur》2006,8(3):905-916
In the past two decades, humans have faced many new viral infectious agents in emerging and re-emerging infectious diseases (EIDs). Many factors contribute to the appearance of EIDs. These factors are complex but can be classified into three different categories: virus factors, human factors, and ecological factors. The factors contributing to the cause of such viral infectious diseases will be systematically reviewed in this article. 相似文献
20.
This paper is concerned with a stochastic model for the spread of an SEIR (susceptible --> exposed (= latent) --> infective --> removed) epidemic among a population partitioned into households, featuring different rates of infection for within and between households. The model incorporates responsive vaccination and isolation policies, based upon the appearance of diagnosed cases in households. Different models for imperfect vaccine response are considered. A threshold parameter R*, which determines whether or not a major epidemic can occur, and the probability of a major epidemic are obtained for different infectious and latent period distributions. Simpler expressions for these quantities are obtained in the limiting case of infinite within-household infection rate. Numerical studies suggest that the choice of infectious period distribution and whether or not latent individuals are vaccine-sensitive have a material influence on the spread of the epidemic, while, for given vaccine efficacy, the choice of vaccine action model is less influential. They also suggest that an effective isolation policy has a more significant impact than vaccination. The results show that R* alone is not sufficient to summarise the potential for an epidemic. 相似文献