首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chloroplast initiator tRNAfMet from the green alga Scenedesmus obliquus has been purified and its sequence shown to be p C-G-C-A-G-G-A-U-A-G-A-G-C-A-G-U-C-U-Gm-G-D-A-G-C-U-C-m2(2)G-psi-G-G-G-G-C-U-C-A -U-A-A-psi-C-C-C-A-A-U-m7G-D-C-G-C-A-G-G-T-psi-C-A-A-A-U-C-C-U-G-C-U-C-C-U-G-C-A-A-C-C-A-OH. This structure is prokaryotic in character and displays close homologies with a blue green algal initiator tRNAfMet and bean chloroplast initiator tRNAfMet.  相似文献   

2.
The nucleotide sequence of formylmethionine tRNA from an extreme thermophile, Thermus thermophilus HB8, was determined by a combination of classical methods using unlabeled samples to determine the sequences of the oligonucleotides of RNase T1 and RNase A digests and a rapid sequencing gel technique using 5'-32P labeled samples to determine overlapping sequences. Formylmethionine tRNA from T. thermophilus is composed of two species, tRNAf1Met and tRNAf2Met. Their nucleotide sequences are almost identical, and are also almost identical with that of E. coli tRNAfMet, except for slight modifications and replacements. Both species have modifications at three points which do not exist in E. coli tRNAfMet: 2'-O-methylation at G19, N-1-methylation at A59 and 2-thiolation at T55. Moreover U51 in E. coli tRNAfMet is replaced by C51 in both species, so that a G-C pair is formed between this C51 and G65. tRNAf2Met has a reversed G-C pair at positions 52 and 64 compared with those in tRNAf1Met and E. coli tRNAfMet. Other regions are mostly the same as those in all prokaryotic initiator tRNAs so far reported. The thermostability of these thermophile initiator tRNAs is discussed in relation to their unique modifications.  相似文献   

3.
Escherichia coli initiator methionine tRNA labeled in vivo with 5-fluorouracil (FUra) has been isolated and characterized. The tRNA, with essentially all its uracil and uracil-derived minor bases replaced by FUra, was purified by sequential chromatography, first on diethylaminoethylcellulose (DEAE-cellulose), at pH 8.9, followed by chromatography on Sepharose 4B, using a reverse salt gradient, then on DEAE-Sephadex A-50, and finally on benzoylated DEAE-cellulose. The last step resolved two FUra-substituted tRNAfMet-iso-accepting species, each with a specific activity over 1500 pmol/A260. Kinetic analysis shows both are aminoacylated at the same rate; apparent KmS for the two are 0.92 and 0.94 microM, compared with 1.7 microM for normal tRNAfMet. Chromatographic differences between the two forms of fluorinated tRNAfMet persist after aminoacylation, and the two tRNAs are not interconverted by denaturation and renaturation. The isoacceptors have nearly identical nucleoside composition, and both contain 7-methylguanosine and 2'-O-methylcytidine as the only modified nucleosides. Analysis of complete RNase T1 digests of the two methionine tRNAs shows that they differ in only one oligonucleotide. The sequence 20FpApGp, derived from the dihydrouridine loop and stem region, which is found in one of the isoaccepting forms of the tRNA, is replaced by an oligonucleotide containing adenine and guanine, but no FUra in the other. A modified FUra, with the properties of a 5-fluoro-5,6-dihydrouracil derivative, is detected in this tRNA. 19F NMR spectra of the two species of FUra-substituted initiator tRNA show 9-10 resolved resonances for the 12 FUra residues incorporated. The spectra differ primarily in the shift of one peak in the form lacking the sequence 20FpApGp, from 4.8 ppm downfield from free FUra (= 0 ppm) to 14.9 ppm upfield from the standard.  相似文献   

4.
Nucleotide sequence of starfish initiator tRNA.   总被引:4,自引:15,他引:4       下载免费PDF全文
The nucleotide sequence of starfish ovary initiator tRNA was determined to be pA-G-C-A-G-A-G-U-m1G-m2G-C-G-C-A-G-U-G-G-A-A-G-C-G-U-G-C-U-G-G-G-C-C-C-A-U-t6A-A-C-C-C-A-G-A-G-m7G-D-m5C-C-G-A-G-G-A-psi-C-G-m1A-A-A-C-C-U-C-G-C-U-C-U-G-C-U-A-C-C-AOH. The sequence was determined by a combination of the two different post-labeling techniques. Two-dimensional cellulose thin-layer chromatography was adopted for analysis of 5'-terminal nucleotides of tRNA fragments produced by formamide treatment. The nucleotide sequence of starfish initiator tRNA is very similar to that of mammalian cytoplasmic initiator tRNAs, but has seven different nucleotide residues and two modifications: residue 55 is psi instead of U, and residue 26 is unmodified G instead of m2G.  相似文献   

5.
The nucleotide sequences of soybean chloroplast tRNAsLeu were determined using post-labeling techniques. Comparison of the primary structures of soybean chloroplast tRNAsLeu with their bean, maize and spinach counterparts only show few base differences. Contrary to previously published results (1) a re-examination of bean tRNALeu sequence shows that this tRNA resembles soybean and maize tRNA2Leu in structure.  相似文献   

6.
The total primary structure of cytoplasmic initiator tRNA from Tetrahymena thermophila mating type IV, was determined by post labeling techniques. The sequence is pa-G-C-A-G-G-G-U-m1G-G-C-G-A-A-A-D-Gm-G-A-A-U-C-G-C-G-U-Psi-G-G-G-C-U-C-A-U-t6A -A-C-Psi-C-A-A-A-A-m7G-U-m5C-A-G-A-G-G-A-Psi-C-G-m1A-A-A-C-C-U-C-U-C-U-C-U-G-C- U-A-C-C-AOH. The nucleotide residue in the position next to the 5'-end of the anticodon of this tRNA (residue No. 33) is uridine instead of cytidine, which has been found in cytoplasmic initiator tRNAs from multicellular eukaryotic organisms. The sequence of three consecutive G-C base pairs in the anticodon stem common to all other cytoplasmic initiator tRNAs is disrupted in this tRNA; namely, the cytidine at residue 40 in this region is replaced by pseudouridine in Tetrahymena initiator tRNA.  相似文献   

7.
The nucleotide sequence of initiator tRNA, tRNAfMet, from vitellogenic oocytes of Xenopus laevis was determined. The sequence was deduced from analysis of all T1 and pancreatic oligonucleotides and comparison with the sequence of initiator tRNA from other animal species. At least 80% of all initiator tRNA molecules from oocytes have the same nucleotide sequence. This means that most and probably all initiator tRNA genes which are active in oocytes are identical to one another. No structural difference was observed between liver and oocyte initiator tRNAs. Initiator tRNA from X. laevis has the same nucleotide sequence as initiator tRNA from several species of mammals. The genes coding for this RNA have therefore remained unchanged in the mammalian and amphibian lines for at least 300000000 years.  相似文献   

8.
Initiator methionine tRNA from the cytoplasm of Neurospora crassa has been purified and sequenced. The sequence is: pAGCUGCAUm1GGCGCAGCGGAAGCGCM22GCY*GGGCUCAUt6AACCCGGAGm7GU (or D) - CACUCGAUCGm1AAACGAG*UUGCAGCUACCAOH. Similar to initiator tRNAs from the cytoplasm of other eukaryotes, this tRNA also contains the sequence -AUCG- instead of the usual -TphiCG (or A)- found in loop IV of other tRNAs. The sequence of the N. crassa cytoplasmic initiator tRNA is quite different from that of the corresponding mitochondrial initiator tRNA. Comparison of the sequence of N. crassa cytoplasmic initiator tRNA to those of yeast, wheat germ and vertebrate cytoplasmic initiator tRNA indicates that the sequences of the two fungal tRNAs are no more similar to each other than they are to those of other initiator tRNAs.  相似文献   

9.
Formylation of the initiator methionyl-tRNA (Met-tRNAfMet) in eubacteria is catalyzed by methionyl-tRNA formyltransferase (MTF). Features of the Escherichia coli tRNAfMet that are important for formylation are the base-base mismatch between nucleotides 1 and 72, and the second and third base pairs of the acceptor stem. The base-base mismatch is the most crucial formylation determinant in the E. coli tRNAfMet. However, it is not known whether this feature is also important for formylation of other eubacterial tRNAfMet. We cloned the Pseudomonas aeruginosa MTF gene by complementation of an E. coli MTF mutant strain with a genomic library, and investigated the catalytic properties and substrate specificity of the enzyme. The results show that the P. aeruginosa and E. coli enzymes have comparable affinities for the tRNAfMet and N10-formyltetrahydrofolate (fTHF) substrates. Overproduction of the P. aeruginosa MTF rescued the initiator activity of an E. coli formylation-defective tRNAfMet with a base pair between nucleotides 1 and 72, indicating that the base-base mismatch is utilized by the P. aeruginosa MTF for recognition of the tRNAfMet. Therefore, this feature may be used by MTFs from other eubacteria to distinguish the initiator from elongator tRNAs.  相似文献   

10.
Summary A comparison of the protein patterns of the 70S and 80S ribosomes from various plants, E. coli and yeast by disc-gel electrophoresis has shown the following relations: 1. There is a greater similarity between chloroplast ribosomes from various plants than between chloroplast and cytoplasmic ribosomes obtained from the same plant. 2. The protein patterns of the cytoplasmic ribosomes from bean, spinach and tobacco are more similar to each other than when compared to that of wheat germ. 3. At least one band is common to cytoplasmic ribosomes from all plants tested. 4. Only very few bands with identical mobilities are observed between chloroplast and E. coli ribosomes and between cytoplasmic plant and yeast ribosomes.  相似文献   

11.
12.
Two methionine tRNAs from yeast mitochondria have been purified. The mitochondrial initiator tRNA has been identified by formylation using a mitochondrial enzyme extract. E. coli transformylase however, does not formylate the yeast mitochondrial initiator tRNA. The sequence was determined using both 32P-in vivo labeled and 32P-end labeled mt tRNAf(Met). This tRNA, unlike N. crassa mitochondrial tRNAf(Met), has two structural features typical of procaryotic initiator tRNAs: (i) it lacks a Watson-Crick base-pair at the end of the acceptor stem and (ii) has a T-psi-C-A sequence in loop IV. However, both yeast and N. crassa mitochondrial initiator tRNAs have a U11:A24 base-pair in the D-stem unlike procaryotic initiator tRNAs which have A11:U24. Interestingly, both mitochondrial initiator tRNAs, as well as bean chloroplast tRNAf(Met), have only two G:C pairs next to the anticodon loop, unlike any other initiator tRNA whatever its origin. In terms of overall sequence homology, yeast mitochondrial tRNA(Met)f differs from both procaryotic or eucaryotic initiator tRNAs, showing the highest homology with N. crassa mitochondrial initiator tRNA.  相似文献   

13.
张露 《遗传学报》1992,19(2):156-161
本实验序列分析并精确定位了萝卜(Raphanus sativus)叶绿体DNA花粉育性片段B_(21)的部分序列(ZL1)。结果表明,ZL1片段长474bp,其碱基组成是AT丰富的。与烟草全序列的比较分析发现,该片段位于烟草全序列中反向重复区IR_A的142330到142803、IR_B的100199到99726区段,其核苷酸序列与相应的烟草序列比较有96.6%的同源性。该片段具有rps12—rps7操纵子的一部分结构,分别编码核糖体小亚基蛋白S12的C-末端的7个氨基酸残基和S7的N-末端的93个氨基酸残基。两者的氨基酸序列与烟草、玉米、地钱、眼虫藻,大肠杆菌及蓝细菌相应序列的同源性分别为71.4—100%及40—95.5%。 上述结果意味着叶绿体核糖体蛋白质可能和细胞质雄性不育性存在某种联系。  相似文献   

14.
Bean mitochondria and chloroplast tRNAsTrp, purified by RPC-5 chromatography and two-dimensional gel electrophoresis, have been sequenced using post-labeling techniques. The high degree of sequence homology between bean mitochondria and chloroplast tRNAsTrp shows that these two tRNAs are coded for by closely related genes which have probably evolved from a common ancestor gene. The anticodon of bean mitochondria tRNATrp is CmCA, which can recognize UGG (the codon for tryptophan in the universal code) and is complementary neither to UGA (which codes for tryptophan in mammalian and yeast mitochondria) nor to CGG (which could be a tryptophan codeword in plant mitochondria).  相似文献   

15.
The nucleotide sequence of a proline tRNA (anticodon UGG) from cucumber chloroplasts has been determined. The sequence is: pAAGGAUGUAGCGCAGCUUCA-DAGCGCAψUUGUUUUGGNψFACAAAAUmsu7GUCACGGGTψCAAAUCCUGUCAUCCUUACCAOH. It shows 93% homology with spinach chloroplast tRNAPro (UGG) and 72% homology with bean mitochondrial tRNAPro (UGG), the other two known plant organellar tRNAsPro.  相似文献   

16.
The primary sequence of wheat germ initiator tRNA has been determined using in vitro labelling techniques. The sequence is: pAUCAGAGUm1Gm2GCGCAG CGGAAGCGUm2GG psi GGGCCCAUt6AACCCACAGm7GDm5Cm5CCAGGA psi CGm1AAACCUG*GCUCUGAUACCAOH. As in other eukaryotic initiator tRNAs, the sequence -T psi CG(A)- present in loop IV of virtually all tRNA active in protein synthesis is absent and is replaced by -A psi CG-. The base pair G2:C71 present in all other initiator tRNAs recognized by E. coli Met-tRNA transformylase is absent and is replaced by U2:A71. Since wheat germ initiator tRNA is not formylated by E. coli Met-tRNA transformylase this implies a possible role of the G2:C71 base pair present in other initiator tRNAs in formylation of initiator tRNA species.  相似文献   

17.
Spinacia oleracia cholorplast 5S ribosomal RNA was end-labeled with [32P] and the complete nucleotide sequence was determined. The sequence is: pUAUUCUGGUGUCCUAGGCGUAGAGGAACCACACCAAUCCAUCCCGAACUUGGUGGUUAAACUCUACUGCGGUGACGAU ACUGUAGGGGAGGUCCUGCGGAAAAAUAGCUCGACGCCAGGAUGOH. This sequence can be fitted to the secondary structural model proposed for prokaryotic 5S ribosomal RNAs by Fox and Woese (1). However, the lengths of several single- and double-stranded regions differ from those common to prokaryotes. The spinach chloroplast 5S ribosomal RNA is homologous to the 5S ribosomal RNA of Lemna chloroplasts with the exception that the spinach RNA is longer by one nucleotide at the 3' end and has a purine base substitution at position 119. The sequence of spinach chloroplast 5S RNA is identical to the chloroplast 5S ribosomal RNA gene of tobacco. Thus the structures of the chloroplast 5S ribosomal RNAs from some of the higher plants appear to be almost totally conserved. This does not appear to be the case for the higher plant cytoplasmic 5S ribosomal RNAs.  相似文献   

18.
Castor bean is an important oil-producing plant in the Euphorbiaceae family. Its high-quality oil contains up to 90% of the unusual fatty acid ricinoleate, which has many industrial and medical applications. Castor bean seeds also contain ricin, a highly toxic Type 2 ribosome-inactivating protein, which has gained relevance in recent years due to biosafety concerns. In order to gain knowledge on global genetic diversity in castor bean and to ultimately help the development of breeding and forensic tools, we carried out an extensive chloroplast sequence diversity analysis. Taking advantage of the recently published genome sequence of castor bean, we assembled the chloroplast and mitochondrion genomes extracting selected reads from the available whole genome shotgun reads. Using the chloroplast reference genome we used the methylation filtration technique to readily obtain draft genome sequences of 7 geographically and genetically diverse castor bean accessions. These sequence data were used to identify single nucleotide polymorphism markers and phylogenetic analysis resulted in the identification of two major clades that were not apparent in previous population genetic studies using genetic markers derived from nuclear DNA. Two distinct sub-clades could be defined within each major clade and large-scale genotyping of castor bean populations worldwide confirmed previously observed low levels of genetic diversity and showed a broad geographic distribution of each sub-clade.  相似文献   

19.
Soluble protein extracts and chloroplasts from a serial sequence of transverse sections of a 7-d-old wheat leaf (Triticum aestivum cv. Maris Huntsman) were used to study changes in the activity of glutamine synthetase (GS; EC 6.3.1.2) during cell and chloroplast development. Glutamine synthetase activity increased more than 50-fold per cell from the base to the tip of the wheat leaf. Two isoenzymes of GS were separated using fast protein liquid chromatography (FPLC). Glutamine synthetase localized in the cytoplasm (GS1) eluted at about 0.21 M NaCl, and the isoenzyme localized in the chloroplast (GS2) eluted at about 0.33 M NaCl. The increase in GS activity during leaf development was found to be caused primarily by an increase in the activity of the chloroplast GS2. The activity of the cytoplasmic GS1 remained constant as the cells were displaced from the base to the tip of the leaf, whereas GS2 activity increased within the chloroplast throughout development. At the base of the leaf, 26% of total GS activity was cytoplasmic; the remaining 74% was in the chloroplast. At 10 cm from the base, only 4% of the activity was cytoplasmic, and 96% was in the chloroplast. The results indicate that the chloroplast GS2 is probably responsible for most of the ammonia assimilation in the mature wheat leaf, whereas cytoplasmic GS1 may serve a role in immature developing leaf cells.Abbreviations FPLC fast protein liquid chromatography - GS glutamine synthetase - GS1 cytoplasmic glutamine synthetase - GS2 chloroplast glutamine synthetase  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号