首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acrylamide (AA) can be formed in certain foods by heating, predominantly from the precursor asparagine. It is a carcinogen in animal experiments, but the relevance of dietary exposure for humans is still under debate. There is substantial evidence that glycidamide (GA), metabolically formed from AA by Cyp 2E1-mediated epoxidation, acts as ultimate mutagenic agent. We compared the mutagenic potential of AA and GA in V79-cells, using the hprt mutagenicity-test with N-methyl-N′-nitro-N-nitroso-guanidine (MNNG) as positive control. Whereas MNNG showed marked mutagenic effectivity already at 0.5 μM, AA was inactive up to a concentration of 10 mM. In contrast, GA showed a concentration dependent induction of mutations at concentrations of 800 μM and higher. Human blood was used as model system to investigate genotoxic potential in lymphocytes by single cell gel electrophoresis (comet assay) and by measuring the induction of micronuclei (MN) with bleomycin (BL) as positive control. AA did not induce significant genotoxicity or mutagenicity up to 6000 μM. With GA, concentration dependent DNA damage was observed in the dose range of 300–3000 μM after 4 h incubation. Significant MN-induction was not observed with AA (up to 5000 μM) and GA (up to 1000 μM), whereas BL (4 μM) induced significantly enhanced MN frequencies. Thus, in our systems GA appears to exert a rather moderate genotoxic activity.  相似文献   

2.
Glutaraldehyde (GA) induces DNA-protein crosslinks (DPX), but conflicting results have been reported with regard to other genotoxic and mutagenic effects in mammalian cells in vitro. We, therefore, characterized the genotoxic and mutagenic potential of GA in V79 cells. Using the alkaline comet assay we demonstrated the induction of DPX by GA (reduction of gamma ray-induced DNA migration) at a concentration of 10 microM and above. The standard comet assay did not reveal a significant DNA strand-breaking activity of GA. Cross-linking concentrations of GA were also cytotoxic, i.e. inhibited cell growth of treated V79 cultures. Interestingly, a small but statistically significant increase in sister chromatid exchange (SCE) and micronuclei (MN) was already measured at lower concentrations (2 and 5 microM). FISH analysis revealed that the majority of GA-induced MN was due to chromosome breaks. We also compared the genotoxic activity of GA to that of formaldehyde (FA). Similar to GA, FA-induced DPX, SCE and MN, but distinct differences exist with regard to the sensitivity of the endpoints and the relationship between genotoxicity and cytotoxicity. However, the differences in genotoxicity cannot readily explain the different carcinogenic activities of the two compounds.  相似文献   

3.
Male CBA mice and male Sprague-Dawley rats were treated by i.p. injection of glycidamide (GA), the presumed genotoxic metabolite of acrylamide (AA). GA was obtained through a new way of synthesis. As an endpoint of chromosome damage, micronucleus (MN) induction in erythrocytes was measured. Hemoglobin (Hb) adducts were used as a measure of in vivo dose of GA. GA induced linear dose-dependent increases in adduct levels in both species. Rats exhibit, compared with mice, 30% higher Hb adduct levels per unit of administered amount of GA. The incremental MN frequencies per administered dose of GA in mice showed a linear-quadratic dose-dependent curve. In the rat no positive dose-response relationship was obtained, probably due to toxic effects to the bone marrow. The main result of this study is the finding that after treatment with synthetic GA the MN frequency per unit of the in vivo dose of GA in the mouse is very similar to that obtained in a previous study, where animals were treated with AA and GA as a metabolite. This equality in potency of GA, whether its in vivo dose is established by injection of synthetic GA or through metabolism of AA, supports the view that GA is the predominant genotoxic factor in AA exposure.  相似文献   

4.
Acetaldehyde (AA) is known to induce DNA-protein cross-links (DPX) and other genotoxic and mutagenic effects in cultured mammalian cells. Compared to formaldehyde (FA), AA is a very weak inducer of DPX and increased DPX levels are only measured at high, cytotoxic concentrations by different methods. Besides DPX, AA also induces DNA-DNA cross-links. Because the comet assay is increasingly used for the detection of cross-linking agents, we characterized the effects of AA in the comet assay in relation to cytotoxicity and other genetic endpoints such as the induction of sister chromatid exchange (SCE) and micronuclei (MN). The standard alkaline comet assay did not indicate induction of DNA strand-breaks by AA in a range of concentrations from 0.2 to 20 mM. AA at a concentration of 20 mM was clearly cytotoxic and reduced cell growth and population doubling to less than 50% of the control. Using the comet assay modification with proteinase K, slightly enhanced DNA migration was measured in comparison to treatment with AA only. No significant induction of cross-links by AA (measured as reduction of gamma ray-induced DNA migration) was determined by the comet assay. A small and reproducible but statistically not significant effect was measured for the AA concentration 20 mM. A clear and concentration-related increase in the frequency of sister chromatid exchange (SCE) and micronuclei (MN) was already measured at lower concentrations (0.2 and 0.5 mM, respectively). These results suggest that the comet assay has a low sensitivity for the detection of AA-induced DNA lesions leading to the induction of SCE and MN.  相似文献   

5.
Genotoxicity of acrylamide and glycidamide in human lymphoblastoid TK6 cells   总被引:10,自引:0,他引:10  
The recent finding that acrylamide (AA), a potent carcinogen, is formed in foods during cooking raises human health concerns. In the present study, we investigated the genotoxicity of AA and its metabolite glycidamide (GA) in human lymphoblastoid TK6 cells examining three endpoints: DNA damage (comet assay), clastogenesis (micronucleus test) and gene mutation (thymidine kinase (TK) assay). In a 4 h treatment without metabolic activation, AA was mildly genotoxic in the micronucleus and TK assays at high concentrations (> 10 mM), whereas GA was significantly and concentration-dependently genotoxic at all endpoints at > or = 0.5 mM. Molecular analysis of the TK mutants revealed that AA predominantly induced loss of heterozygosity (LOH) mutation like spontaneous one while GA-induced primarily point mutations. These results indicate that the genotoxic characteristics of AA and GA were distinctly different: AA was clastogenic and GA was mutagenic. The cytotoxicity and genotoxicity of AA were not enhanced by metabolic activation (rat liver S9), implying that the rat liver S9 did not activate AA. We discuss the in vitro and in vivo genotoxicity of AA and GA.  相似文献   

6.
As humans are exposed to a variety of chemical agents as well as radiation, health effects of radiation should be evaluated in combination with chemicals. To explore combined genotoxic effects of radiation and chemicals, we examined modulating effects of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), a direct-acting methylating agent, against genotoxicity of γ-radiation. Human lymphoblastoid TK6 cells and its mismatch-deficient derivative, i.e., MT1 cells, were treated with MNNG for 24h before they were exposed to γ-irradiation at a dose of 1.0 Gy, and the resulting genotoxicity was examined. In TK6 cells, the pretreatments with MNNG at low doses suppressed frequencies of the thymidine kinase (TK) gene mutation and micronucleus (MN) formation induced by γ-irradiation and thus the dose responses of TK and MN assays were U-shaped along with the pretreatment doses of MNNG. In contrast, the genotoxic effects of MNNG and γ-irradiation were additive in MT1 cells and the frequencies of TK mutations and MN induction increased along with the doses of MNNG. Apoptosis induced by γ-radiation was suppressed by the pretreatments in TK6 cells, but not in MT1 cells. The expression of p53 was induced and cell cycle was delayed at G2/M phase in TK6, but not in MT1 cells, by the treatments with MNNG. These results suggest that pretreatments of MNNG at low doses suppress genotoxicity of γ-radiation in human cells and also that mismatch repair proteins are involved in the apparent adaptive responses.  相似文献   

7.
The sensitivity of a cytogenetic assay, as expressed by the in vitro induction of micronuclei (MN), was compared to the in vitro induction of sister-chromatid exchanges (SCEs). Chinese hamster lung (V79) cells were exposed to 3 known alkylating agents: methyl methanesulphonate (MMS), ethyl methanesulphonate (EMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and to 5 newly synthesized naphthofurans: 2-nitro-7-methoxynaphtho[2,1-b]furan (A), 2-nitro-8-methoxynaphtho[2,1-b]furan (B), 2-nitronaphtho[2,1-b]furan (C), 2-nitro-7-bromonaphtho[2,1-b]furan (D) and 7-methoxynaphtho[2,1-b]furan (E). The induction of MN only was also analysed after exposure of the cells to 4 alcohols: ethanol, methanol, butanol and propanol. The lowest dose at which a significant effect could be observed was determined. In both assays, MNNG, MMS and EMS were equally active with the following order of potency: MNNG greater than MMS greater than EMS, the latter being a very weak inducer of MN and SCE. Compounds A and B were also very effective in both assays. Compound C was a more active inducer of SCE than MN. Compounds D and E were not active in either assay. None of the 4 alcohols induced MN. Our results are compared with the previously published data on in vitro and in vivo induction of SCE and MN. We conclude that the MN in vitro assay which detects clastogens as well as agents affecting the spindle apparatus, is a good indicator of genotoxicity, though slightly less sensitive than the in vitro SCE test. It could provide a rapid, simple and inexpensive complementary short-term test for the evaluation of potentially mutagenic chemicals.  相似文献   

8.
We have shown previously that the repair of O6-methylguanine can be induced in murine fibroblasts (C3H 10T1/2 cells) by exposure to X rays. The magnitude of the response is less, however, than is observed in the well-characterized adaptive response of various prokaryotes to methylating agents. To determine whether the induction of O6-alkylguanine-DNA alkyltransferase in C3H 10T1/2 cells is sufficient for protection against the genotoxic effects of the methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), cells were challenged with MNNG after alkyltransferase induction by 1.5 Gy X rays and assayed for cytotoxicity, mutagenicity, and neoplastic transformation. Preirradiated cells were significantly more resistant to the mutagenic effects of MNNG as scored by formation of ouabain-resistant colonies. The protective effect was greatest in cells challenged with a low dose (0.2 or 0.4 micrograms/ml) of MNNG. Protection against neoplastic transformation by MNNG was also observed, although the protective effect in this case was significant only in cells treated with a high dose (1.0 micrograms/ml) of MNNG. In cells that were preirradiated, there was no reduction in the cytotoxicity caused by MNNG or the chloroethylating agent 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). These data indicate that alkyltransferase induction in C3H 10T1/2 cells is sufficient to protect cells against some of the genotoxic effects of the alkylating agent MNNG. The data also suggest that formation of O6-alkylguanine may not be the only means by which alkylating agents can transform C3H 10T1/2 cells.  相似文献   

9.
The mutagenic activity of the natural plant product aristolochic acid (AA) was tested in the Granuloma Pouch Assay, which detects gene mutations induced in a subcutaneous granuloma tissue of rats. After direct exposure of the target tissue, AA induced high frequencies of mutants at a relatively low cytostatic/cytotoxic level. AA was more potent that N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) at equimolar doses. After oral application of AA, a dose-dependent mutagenic activity was seen. In contrast a very weak and inconsistent mutagenic effect was seen after systemic application of MNNG. These observations suggest that after oral application AA is not detoxified efficiently and can exert its mutagenic activity in extrahepatic tissues whereas MNNG is detoxified to a large extent at the site of administration.  相似文献   

10.
We compared the DNA damaging potency of acrylamide (AA) and its metabolite glycidamide (GA) in the comet assay in cell systems differing with respect to species origin and cytochrome P450-depended monooxygenase (CYP2E1) expression (V79, Caco-2, primary rat hepatocytes). Only after 24 h incubation in the highest concentration of AA (6 mM) a slight but significant increase in DNA damage was observed in V79 and Caco-2 cells. In primary rat hepatocytes, however, expressing substantial amounts of CYP2E1, no induction of DNA strand breaks was found. At the end of the incubation time period (24 h), still 67+/-19% of the CYP2E1 protein was detected by Western blotting. Direct treatment with GA resulted in a significant increase in DNA damage in V79 cells and primary rat hepatocytes at concentrations > or =100 microM (24 h). Caco-2 cells were found to be less sensitive, exhibiting an increase in DNA strand breaks at concentrations > or 300 microM GA. These data confirm the higher genotoxic potential of GA compared to AA but also indicate that high expression of CYP2E1 per se is not necessarily associated with increased genotoxicity of AA. We, therefore, investigated whether the intracellular glutathione (GSH) level might be a critical determinant for the genotoxicity of AA in cells with different CYP2E1 status. Depletion of intracellular GSH by dl-buthionine-[S,R]-sulfoxime (BSO) in rat hepatocytes and V79 cells resulted in a significant induction of DNA strand breaks after incubation with 1 mM AA. However, at higher concentrations (> or =1.25 mM) a strong increase in cytotoxicity, resulting in a severe loss of viability, was observed. In summary, the DNA strand breaking effect of AA appeared not to be directly correlated with the CYP2E1 status of the cells. Depletion of GSH is associated with an increase in AA genotoxicity but seems also to lead to a substantial enhancement of cytotoxicity.  相似文献   

11.
Genetic effects of N-methyl-N'-nitro-N-nitrosoguanidine and its homologs   总被引:3,自引:0,他引:3  
Since the discovery of the mutagenic activity of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in 1960, this compound has become one of the most widely used chemical mutagens. The present paper gives a survey on the chemistry, metabolism, and mode of interaction of MNNG with DNA and proteins, and of the genotoxic effects of this agent on microorganisms, plants, and animals, including human cells cultured in vitro. Data on the carcinogenicity and teratogenicity of MNNG as well as on the genotoxic effects of homologs of MNNG are also presented.  相似文献   

12.
Acrylamide (AA) is an important industrial chemical that is neurotoxic, mutagenic to somatic and germ cells, and carcinogenic in chronic rodent bioassays. Recent findings of AA in many common starchy foods have sparked renewed interest in determining toxic mechanisms and in understanding the cancer, neurotoxicity, and reproductive risks from typical human exposures. Dosing mice and rats with AA (50 mg/kg) led to presence of glycidamide (GA) in serum and tissues. Furthermore, GA-derived DNA adducts of adenine and guanine were formed in all tissues examined, including both target tissues identified in rodent carcinogenicity bioassays and in non-target tissues. Dosing rats and mice with an equimolar amount of GA typically produced higher levels of DNA adducts than observed with AA. Kinetics of DNA adduct formation and accumulation were measured following oral administration of a single dose of AA (50 mg/kg) or from repeat dosing (1 mg/kg/day), respectively. The formation of these DNA adducts is consistent with previously reported mutagenicity of AA and GA in vitro, which involved reaction of GA with adenine and guanine bases. These results provide strong support for a genotoxic mechanism of AA carcinogenicity in rodents. The kinetic/biomarker approaches described here may represent a meaningful way to extrapolate cancer risks to actual human exposures from food, which are much lower.  相似文献   

13.
Acrylamide (AA) is an important industrial chemical that is neurotoxic, mutagenic to somatic and germ cells, and carcinogenic in chronic rodent bioassays. Recent findings of AA in many common starchy foods have sparked renewed interest in determining toxic mechanisms and in understanding the cancer, neurotoxicity, and reproductive risks from typical human exposures. Dosing mice and rats with AA (50 mg/kg) led to presence of glycidamide (GA) in serum and tissues. Furthermore, GA-derived DNA adducts of adenine and guanine were formed in all tissues examined, including both target tissues identified in rodent carcinogenicity bioassays and in non-target tissues. Dosing rats and mice with an equimolar amount of GA typically produced higher levels of DNA adducts than observed with AA. Kinetics of DNA adduct formation and accumulation were measured following oral administration of a single dose of AA (50 mg/kg) or from repeat dosing (1 mg/kg/day), respectively. The formation of these DNA adducts is consistent with previously reported mutagenicity of AA and GA in vitro, which involved reaction of GA with adenine and guanine bases. These results provide strong support for a genotoxic mechanism of AA carcinogenicity in rodents. The kinetic/biomarker approaches described here may represent a meaningful way to extrapolate cancer risks to actual human exposures from food, which are much lower.  相似文献   

14.
Styrene is used in the production of plastics, resins and rubber. The highest human exposures to styrene take place by inhalation during the production of fiberglass reinforced plastics. Styrene is metabolized mainly in the liver to styrene-7,8-oxide (SO), its principal in vivo mutagenic metabolite. In this study, human peripheral white blood cells were exposed to several SO concentrations (10-200 microM) in order to evaluate its genotoxic properties by means of comet assay, sister-chromatid exchanges (SCE) and cytokinesis-blocked micronucleus (MN) test, in addition to determine its clastogenic or aneugenic properties by combining MN with fluorescence in situ hybridization (FISH) procedures. Our results show that SO induces DNA damage, SCE and MN in human leukocytes in vitro at concentrations above 50 microM, and that there is a strong relationship between DNA damage, as measured by the comet assay, and cytogenetic damage induced by SO at the doses employed. SO shows preferentially a clastogenic activity and produces a cytostatic effect at high doses, reflected by the significant decrease of the calculated proliferation indices. A good dose-effect relationship is obtained in the three tests performed at the concentration range assayed.  相似文献   

15.
The genotoxic activities of three cancer chemopreventive drug candidates, CP-31398 (a cell permeable styrylquinazoline p53 modulator), SHetA2 (a flexible heteroarotinoid), and phospho-ibuprofen (PI, a derivative of ibuprofen) were tested. None of the compounds were mutagenic in the Salmonella/Escherichia coli/microsome plate incorporation test. CP-31398 and SHetA2 did not induce chromosomal aberrations (CA) in Chinese hamster ovary (CHO) cells, either in the presence or absence of rat hepatic S9 (S9). PI induced CA in CHO cells, but only in the presence of S9. PI, its parent compound ibuprofen, and its moiety diethoxyphosphoryloxybutyl alcohol (DEPBA) were tested for CA and micronuclei (MN) in CHO cells in the presence of S9. PI induced CA as well as MN, both kinetochore-positive (Kin+) and -negative (Kin-), in the presence of S9 at ≤100μg/ml. Ibuprofen was negative for CA, positive for MN with Kin+ at 250μg/ml, and positive for MN with Kin- at 125 and 250μg/ml. DEPBA induced neither CA nor MN at ≤5000μg/ml. The induction of chromosomal damage in PI-treated CHO cells in the presence of S9 may be due to its metabolites. None of the compounds were genotoxic, in the presence or absence of S9, in the GADD45α-GFP Human GreenScreen assay and none induced MN in mouse bone marrow erythrocytes.  相似文献   

16.
Products containing phytoestrogens are increasingly promoted as the "natural" alternative to estrogen replacement therapy. In the present study, we have used the in vitro micronucleus assay in L5178Y mouse lymphoma cells to investigate the genotoxic potential of the isoflavone daidzein, and of four daidzein metabolites known to be formed in humans. Whereas no induction of micronuclei was observed with daidzein up to the limit of solubility (100 microM), all four daidzein metabolites, i.e. equol (2.3-fold induction at 100 microM), O-desmethylangolensin (6.2-fold induction at 10 microM), 4',6,7-isoflavone (6.7-fold induction at 100 microM) and 3',4',7-isoflavone (8.2-fold induction at 100 microM) induced micronuclei in a concentration-dependent manner. Thus, both reductive and oxidative metabolites of the soy isoflavone daidzein exhibit genotoxic potential in vitro.  相似文献   

17.
Chung HW  Kang SJ  Kim SY 《Mutation research》2002,516(1-2):49-56
The cytokinesis-block micronucleus (CBMN) assay has emerged as one of the preferred methods for assessing chromosome damage. Micronuclei (MN) are small, extranuclear bodies that are formed in mitosis from acentric chromosomal fragments or chromosomes that are not included in each daughter nucleus. Thus, MN contain either chromosomal fragments or whole chromosomes. The CBMN assay, together with a fluorescence in situ hybridization (FISH) technique using specific centromeric probes for chromosomes 7 and 8, were employed in mitogen-stimulated human lymphocytes pretreated with the benzene metabolite, 1,2,4-benzenetriol (BT). Treatment of human lymphocytes resulted in the induction of MN in a dose-dependent manner. The frequency of MN in control lymphocytes was 4.5 per 1000 binucleated (BN) cells and this increased to 9.5, 14, 28 and 40 per 1000 BN cells at 10, 25, 50 and 100 microM BT, respectively. The frequency of aneuploidy 7 and 8 in BN cells also increased at each concentration. Aneuploidy 8 was more frequent than aneuploidy 7, suggesting that chromosome 8 is more sensitive to aneuploidy induction by BT. The frequency of MN containing centromere positive signals for chromosomes 7 and 8 increased with the concentration of BT. The frequency of MN with centromere positive signals was higher for chromosome 8 than for chromosome 7, also suggesting a greater sensitivity of chromosome 8 to this agent. These results suggest that combined application of the CBMN assay with a FISH technique, using chromosome-specific centromeric probes, would allow the detection of aneuploidy in human lymphocytes and identify the mechanistic origin of MN induced by a clastogen or aneugen.  相似文献   

18.
We have already found that the in vivo skin comet assay is useful for the evaluation of primary DNA damage induced by genotoxic chemicals in epidermal skin cells. The aim of the present study was to evaluate the sensitivity and specificity of the combined in vivo skin comet assay and in vivo skin micronucleus (MN) test using the same animal to explore the usefulness of the new test method. The combined alkaline comet assay and MN test was carried out with three chemicals: 4-nitroquinoline-1-oxide (4NQO), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and benzo[a]pyrene (B[a]P). In the first experiment, we compared DNA- and chromosome-damaging effects of 3 [72, 24 and 3 hours (h) before sacrifice] and 4 applications (72, 48, 24 and 3h before sacrifice) of 4NQO, which induces dermal irritancy. The animals were euthanized and their skin was sampled for the combination test. As a result, the 4-application method was able to detect both DNA- and chromosome-damaging potential with a lower concentration; therefore, in the second experiment, MNNG and B[a]P were topically applied four times, respectively. The animals were euthanized, and then their skins were sampled for combination tests. In the alkaline comet assay, significant differences in the percent of DNA (%DNA) in the tail were observed in epidermal skin cells treated with MNNG and B[a]P. In the MN test, an increased frequency of MN cells (%MN) cells was observed by treatment with MNNG; however, there were no significant increases. In contrast, significant differences in %MN were observed by treatment with B[a]P. From these results, we conclude that the combined in vivo skin comet assay and in vivo MN test was useful because it can detect different genotoxicity with the same sampling time and reduce the number of animals used.  相似文献   

19.
Aim of the study was to investigate the usefulness of two human derived hepatoma cell lines (HepG2 and Hep3B) for the detection of dietary and lifestyle related DNA-reactive carcinogens. Comparisons of the sensitivity of HepG2 cells of different origin towards benzo[a]pyrene (B(a)P) showed that strong differences exist in the induction of micronuclei (MN). The most sensitive was used for all further experiments, in which we investigated the effects of aflatoxin B(1) (AFB(1)), B(a)P, As(2)O(3), CdCl(2), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), N-nitrosodimethylamine (NDMA), N-nitrosopyrrolidine (NPYR), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), ethanol, acetaldehyde and caffeic acid in micronucleus (MN) tests. Dose dependent effects were detected in HepG2 with AFB(1) (0.2microM), CdCl(2) (2.2microM), As(2)O(3) (8.1microM), B(a)P (22.7microM), PhIP (35.7microM), NDMA (22.7mM), acetaldehyde (11.2mM) and ethanol (442.2mM). Numbers in parentheses indicate the C(D) values (concentration that induced a two-fold increase over the background). NNK and caffeic acid gave negative results under all conditions. In Hep3B cells, the effects were generally weaker. With PhIP, As(2)O(3) and NDMA negative results were obtained; with caffeic acid and NPYR marginal but significant induction of MN was observed. Enzyme measurements showed that both cell lines possess CYP1A1, glutathione-S-transferase (three-fold higher in HepG2) as well as N-acetyltransferase (NAT) 1 and sulfotransferases (SULT1A1 and SULT1A3; two- and seven-fold higher in HepG2); other cytochrome P450 enzymes (CYP1A2, 2B1, 2E1) and NAT2 were not detectable. The differences in the activities of the various enzymes may explain the contrasting results obtained in the MN experiments. Overall, our results indicate that the HepG2 line is more sensitive towards dietary genotoxins than Hep3B, and support the assumption that the HepG2/MN assay enables the detection of genotoxic carcinogens which give negative results in other currently used in vitro assays.  相似文献   

20.

Concern on the toxicity of final wastewater generated by the petroleum refining industry has increased in recent years due to the potential health threats associated with their release into the waterways. This study determined the mutagenic and genotoxic potential of petroleum refinery wastewater and a receiving river using the Ames fluctuation test on Salmonella typhimurium strains TA100 and TA98, SOS chromotest on Escherichia coli PQ37, and piscine peripheral micronucleus (MN) assay. Analyses of the physicochemical parameters, heavy metal, and organic contents of the samples were also performed. Ames test result showed that the two tested samples were mutagenic with TA100 strain as the more responsive strain for both the refinery wastewater and the river sample in terms of the calculated mutagenic index. A similar result was obtained in the SOS chromotest; however, the E. coli PQ37 system recorded a slightly higher sensitivity for detecting genotoxins than the Salmonella assay in the two samples. MN data showed induction of a concentration-dependent significant (p < 0.05) increase in the frequency of MN by both samples when compared with the negative control. Generally, the refinery wastewater induced the highest mutagenicity and genotoxicity compared to the river sample in the three assays used. Haemoglobin, platelets, red blood cells, mean corpuscular volume, total white blood cells, heterophils, haematocrit, and eosinophils reduced significantly with increased lymphocytes, basophils, mean corpuscular haemoglobin, and mean corpuscular haemoglobin concentration in fishes exposed to both samples. Total petroleum hydrocarbon, benzene, toluene, phenol index, polycyclic aromatic hydrocarbons, cadmium, mercury, nickel, lead, and vanadium contents analysed in the samples were believed to be responsible for the observed genotoxicity and mutagenicity. The findings of this study revealed that petroleum refinery wastewater is a potential mutagenic and genotoxic risk to the environment.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号