首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron spin resonance (ESR) studies of radicals formed by radiation-induced multiple one-electron oxidations of guanine moieties in DNA are reported in this work. Annealing of gamma-irradiated DNA from 77 to 235 K results in the hydration of one electron oxidized guanine (G•+) to form the 8-hydroxy-7,8-dihydroguanin-7-yl-radical (•GOH) having one β-proton coupling of 17–28 G and an anisotropic nitrogen coupling, A, of ~20 G, A = 0 with g = 2.0026 and g = 2.0037. Further annealing to 258 K results in the formation of a sharp singlet at g = 2.0048 with line-width of 5.3 G that is identified as the 8-oxo-7,8-dihydroguanine one-electron-oxidized radical (8-oxo-G•+). This species is formed via two one-electron oxidations of •GOH. These two one-electron oxidation steps leading to the formation of 8-oxo-G•+ from •GOH in DNA, are in accordance with the expected ease of oxidation of •GOH and 8-oxo-G. The incorporation of oxygen from water in G•+ leading to •GOH and to 8-oxo-G•+ is verified by ESR studies employing 17O isotopically enriched water, which provide unambiguous evidence for the formation of both radicals. ESR analysis of irradiated-DNA in the presence of the electron scavenger, Tl3+, demonstrates that the cationic pathway leads to the formation of the 8-oxo-G•+. In irradiated DNA–Tl3+ samples, Tl3+ captures electrons. Tl2+ thus produced is a strong oxidant (2.2 V), which is metastable at 77 K and is observed to increase the formation of G•+ and subsequently of 8-oxo-G•+ upon annealing. We find that in the absence of the electron scavenger the yield of 8-oxo-G•+ is substantially reduced as a result of electron recombinations with G•+ and possible reaction with •GOH.  相似文献   

2.
Oxidative stress has been implicated in a number of pathologic conditions including ischemia/reperfusion damage and sepsis. The concept of oxidative stress refers to the aberrant formation of ROS (reactive oxygen species), which include O2•-, H2O2, and hydroxyl radicals. Reactive oxygen species influences a multitude of cellular processes including signal transduction, cell proliferation and cell death1-6. ROS have the potential to damage vascular and organ cells directly, and can initiate secondary chemical reactions and genetic alterations that ultimately result in an amplification of the initial ROS-mediated tissue damage. A key component of the amplification cascade that exacerbates irreversible tissue damage is the recruitment and activation of circulating inflammatory cells. During inflammation, inflammatory cells produce cytokines such as tumor necrosis factor-α (TNFα) and IL-1 that activate endothelial cells (EC) and epithelial cells and further augment the inflammatory response7. Vascular endothelial dysfunction is an established feature of acute inflammation. Macrophages contribute to endothelial dysfunction during inflammation by mechanisms that remain unclear. Activation of macrophages results in the extracellular release of O2•- and various pro-inflammatory cytokines, which triggers pathologic signaling in adjacent cells8. NADPH oxidases are the major and primary source of ROS in most of the cell types. Recently, it is shown by us and others9,10 that ROS produced by NADPH oxidases induce the mitochondrial ROS production during many pathophysiological conditions. Hence measuring the mitochondrial ROS production is equally important in addition to measuring cytosolic ROS. Macrophages produce ROS by the flavoprotein enzyme NADPH oxidase which plays a primary role in inflammation. Once activated, phagocytic NADPH oxidase produces copious amounts of O2•- that are important in the host defense mechanism11,12. Although paracrine-derived O2•- plays an important role in the pathogenesis of vascular diseases, visualization of paracrine ROS-induced intracellular signaling including Ca2+ mobilization is still hypothesis. We have developed a model in which activated macrophages are used as a source of O2•- to transduce a signal to adjacent endothelial cells. Using this model we demonstrate that macrophage-derived O2•- lead to calcium signaling in adjacent endothelial cells.  相似文献   

3.
Reactive nitrogen/oxygen species (ROS/RNS) at low concentrations play an important role in regulating cell function, signaling, and immune response but in unregulated concentrations are detrimental to cell viability1, 2. While living systems have evolved with endogenous and dietary antioxidant defense mechanisms to regulate ROS generation, ROS are produced continuously as natural by-products of normal metabolism of oxygen and can cause oxidative damage to biomolecules resulting in loss of protein function, DNA cleavage, or lipid peroxidation3, and ultimately to oxidative stress leading to cell injury or death4. Superoxide radical anion (O2•-) is the major precursor of some of the most highly oxidizing species known to exist in biological systems such as peroxynitrite and hydroxyl radical. The generation of O2•- signals the first sign of oxidative burst, and therefore, its detection and/or sequestration in biological systems is important. In this demonstration, O2•- was generated from polymorphonuclear neutrophils (PMNs). Through chemotactic stimulation with phorbol-12-myristate-13-acetate (PMA), PMN generates O2•- via activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase5. Nitric oxide (NO) synthase which comes in three isoforms, as inducible-, neuronal- and endothelial-NOS, or iNOS, nNOS or eNOS, respectively, catalyzes the conversion of L- arginine to L-citrulline, using NADPH to produce NO6. Here, we generated NO from endothelial cells. Under oxidative stress conditions, eNOS for example can switch from producing NO to O2•- in a process called uncoupling, which is believed to be caused by oxidation of heme7 or the co-factor, tetrahydrobiopterin (BH4)8.There are only few reliable methods for the detection of free radicals in biological systems but are limited by specificity and sensitivity. Spin trapping is commonly used for the identification of free radicals and involves the addition reaction of a radical to a spin trap forming a persistent spin adduct which can be detected by electron paramagnetic resonance (EPR) spectroscopy. The various radical adducts exhibit distinctive spectrum which can be used to identify the radicals being generated and can provide a wealth of information about the nature and kinetics of radical production9.The cyclic nitrones, 5,5-dimethyl-pyrroline-N-oxide, DMPO10, the phosphoryl-substituted DEPMPO11, and the ester-substituted, EMPO12 and BMPO13, have been widely employed as spin traps--the latter spin traps exhibiting longer half-lives for O2•- adduct. Iron (II)-N-methyl-D-glucamine dithiocarbamate, Fe(MGD)2 is commonly used to trap NO due to high rate of adduct formation and the high stability of the spin adduct14.  相似文献   

4.

Background

Kinin B1 receptor (B1R) is induced by the oxidative stress in models of diabetes mellitus. This study aims at determining whether B1R activation could perpetuate the oxidative stress which leads to diabetic complications.

Methods and Findings

Young Sprague-Dawley rats were fed with 10% D-Glucose or tap water (controls) for 8–12 weeks. A selective B1R antagonist (SSR240612) was administered acutely (3–30 mg/kg) or daily for a period of 7 days (10 mg/kg) and the impact was measured on systolic blood pressure, allodynia, protein and/or mRNA B1R expression, aortic superoxide anion (O2 •−) production and expression of superoxide dismutase (MnSOD) and catalase. SSR240612 reduced dose-dependently (3–30 mg/kg) high blood pressure in 12-week glucose-fed rats, but had no effect in controls. Eight-week glucose-fed rats exhibited insulin resistance (HOMA index), hypertension, tactile and cold allodynia and significant increases of plasma levels of glucose and insulin. This was associated with higher aortic levels of O2 •−, NADPH oxidase activity, MnSOD and catalase expression. All these abnormalities including B1R overexpression (spinal cord, aorta, liver and gastrocnemius muscle) were normalized by the prolonged treatment with SSR240612. The production of O2 •− in the aorta of glucose-fed rats was also measured in the presence and absence of inhibitors (10–100 µM) of NADPH oxidase (apocynin), xanthine oxidase (allopurinol) or nitric oxide synthase (L-NAME) with and without Sar[D-Phe8]des-Arg9-BK (20 µM; B1R agonist). Data show that the greater aortic O2 •− production induced by the B1R agonist was blocked only by apocynin.

Conclusions

Activation of kinin B1R increased O2 •− through the activation of NADPH oxidase in the vasculature. Prolonged blockade of B1R restored cardiovascular, sensory and metabolic abnormalities by reducing oxidative stress and B1R gene expression in this model.  相似文献   

5.
When photosystem II (PSII) is exposed to excess light, singlet oxygen (1O2) formed by the interaction of molecular oxygen with triplet chlorophyll. Triplet chlorophyll is formed by the charge recombination of triplet radical pair 3[P680•+Pheo•−] in the acceptor-side photoinhibition of PSII. Here, we provide evidence on the formation of 1O2 in the donor side photoinhibition of PSII. Light-induced 1O2 production in Tris-treated PSII membranes was studied by electron paramagnetic resonance (EPR) spin-trapping spectroscopy, as monitored by TEMPONE EPR signal. Light-induced formation of carbon-centered radicals (R) was observed by POBN-R adduct EPR signal. Increased oxidation of organic molecules at high pH enhanced the formation of TEMPONE and POBN-R adduct EPR signals in Tris-treated PSII membranes. Interestingly, the scavenging of R by propyl gallate significantly suppressed 1O2. Based on our results, it is concluded that 1O2 formation correlates with R formation on the donor side of PSII due to oxidation of organic molecules (lipids and proteins) by long-lived P680•+/TyrZ. It is proposed here that the Russell mechanism for the recombination of two peroxyl radicals formed by the interaction of R with molecular oxygen is a plausible mechanism for 1O2 formation in the donor side photoinhibition of PSII.  相似文献   

6.
Thermostability of the photosynthetic apparatus of abscisic acid (ABA)-treated seedlings of barley (Hordeum vulgare) was studied by light-scattering and by fluorescence measurements of isolated chloroplasts. ABA treatment markedly decreased heat damage of the chloroplast ultrastructure; an exogenous ABA concentration of 10−5 molar was most effective. Heat-induced increase of the 77 kilodalton fluorescence ratio F740/F685 was also smaller at this ABA concentration. The heat-induced increase of the initial chlorophyll fluorescence level (Fo) was virtually eliminated in ABA-treated (10−5 molar) chloroplasts up to 45°C and slightly increased at 50°C, relative to control chloroplasts where Fo increased even at 35°C and reached its maximal value at 45°C. In control chloroplasts, Fo increased with a 5-minute pretreatment temperature, an effect observed as low as 35°C. Fo was maximal at 45°C. In contrast, chloroplasts treated with 10−5 molar ABA did not exhibit a heat-induced increase in Fo until 50°C.  相似文献   

7.
Myocardial ischemia–reperfusion (I/R) causes severe cardiac damage. Although the primary function of oxymyoglobin (Mb) has been considered to be cellular O2 storage and supply, previous research has suggested that Mb is a potentially protective element against I/R injury. However, the mechanism of its protective action is still largely unknown. With a real-time fluorescent technique, we observed that at the onset of ischemia, there was a small burst of superoxide (O2•–) release, as visualized in an isolated rat heart. Thus, we hypothesize that the formation of O2•– correlates to Mb due to a decrease in oxygen tension in the myocardium. Measurement of O2•– production in a Langendorff apparatus was performed using surface fluorometry. An increase in fluorescence was observed during the onset of ischemia in hearts perfused with a solution of hydroethidine, a fluorescent dye sensitive to intracellular O2•–. The increase of fluorescence in the ischemic heart was abolished by a superoxide dismutase mimic, carbon monoxide, or by Mb-knockout gene technology. Furthermore, we identified that O2•– was not generated from the intracellular endothelium but from the myocytes, which are a rich source of Mb. These results suggest that during the onset of ischemia, Mb is responsible for generating O2•–. This novel mechanism may shed light on the protective role of Mb in I/R injury.  相似文献   

8.
It has been reported that salicylic acid (SA) induces both immediate spike and long lasting phases of oxidative burst represented by the generation of reactive oxygen species (ROS) such as superoxide anion radical (O2•−). In general, in the earlier phase of oxidative burst, apoplastic peroxidase are likely involved and in the late phase of the oxidative burst, NADPH oxidase is likely involved. Key signaling events connecting the 2 phases of oxidative burst are calcium channel activation and protein phosphorylation events. To date, the known earliest signaling event in response to exogenously added SA is the cell wall peroxidase-catalyzed generation of O2•− in a hydrogen peroxide (H2O2)-dependent manner. However, this model is incomplete since the source of the initially required H2O2 could not be explained. Based on the recently proposed role for H2O2-independent mechanism for ROS production catalyzed by plant peroxidases (Kimura et al., 2014, Frontiers in Plant Science), we hereby propose a novel model for plant peroxidase-catalyzed oxidative burst fueled by SA.  相似文献   

9.
Programmed cell death (PCD) is an integrated cellular process occurring in plant growth, development, and defense responses to facilitate normal growth and development and better survival against various stresses as a whole. As universal toxic chemicals in plant and animal cells, reactive oxygen or nitrogen species (ROS or RNS), mainly superoxide anion (O2−•), hydrogen peroxide (H2O2) or nitric oxide (NO), have been studied extensively for their roles in PCD induction. Physiological and genetic studies have convincingly shown their essential roles. However, the details and mechanisms by which ROS and NO interplay and induce PCD are not well understood. Our recent study on Cupressus lusitanica culture cell death revealed the elicitor-induced co-accumulation of ROS and NO and interactions between NO and H2O2 or O2- in different ways to regulate cell death. NO and H2O2 reciprocally enhanced the production of each other whereas NO and O2−• showed reciprocal suppression on each other''s production. It was the interaction between NO and O2- but not between NO and H2O2 that induced PCD, probably through peroxynitrite (ONOO). In this addendum, some unsolved issues in the study were discussed based on recent studies on the complex network of ROS and NO leading to PCD in animals and plants.Key Words: cell death, nitric oxide, reactive oxygen species, interaction, posttranslational modification  相似文献   

10.

Background

Oxygen free radicals induce lipid peroxidation (LPO) that damages and breaks polyunsaturated fatty acids in cell membranes. LPO-derived aldehydes and hydroxyalkenals react with DNA leading to the formation of etheno(ε)-bases including 1,N 6-ethenoadenine (εA) and 3,N 4-ethenocytosine (εC). The εA and εC residues are highly mutagenic in mammalian cells and eliminated in the base excision repair (BER) pathway and/or by AlkB family proteins in the direct damage reversal process. BER initiated by DNA glycosylases is thought to be the major pathway for the removal of non-bulky endogenous base damage. Alternatively, in the nucleotide incision repair (NIR) pathway, the apurinic/apyrimidinic (AP) endonucleases can directly incise DNA duplex 5′ to a damaged base in a DNA glycosylase-independent manner.

Methodology/Principal Findings

Here we have characterized the substrate specificity of human major AP endonuclease 1, APE1, towards εA, εC, thymine glycol (Tg) and 7,8-dihydro-8-oxoguanine (8oxoG) residues when present in duplex DNA. APE1 cleaves oligonucleotide duplexes containing εA, εC and Tg, but not those containing 8oxoG. Activity depends strongly on sequence context. The apparent kinetic parameters of the reactions suggest that APE1 has a high affinity for DNA containing ε-bases but cleaves DNA duplexes at an extremely slow rate. Consistent with this observation, oligonucleotide duplexes containing an ε-base strongly inhibit AP site nicking activity of APE1 with IC50 values in the range of 5–10 nM. MALDI-TOF MS analysis of the reaction products demonstrated that APE1-catalyzed cleavage of εA•T and εC•G duplexes generates, as expected, DNA fragments containing 5′-terminal ε-base residue.

Conclusions/Significance

The fact that ε-bases and Tg in duplex DNA are recognized and cleaved by APE1 in vitro, suggests that NIR may act as a backup pathway to BER to remove a large variety of genotoxic base lesions in human cells.  相似文献   

11.
This work presents evidence that photo-excitation of guanine radical cations results in high yields of deoxyribose sugar radicals in DNA, guanine deoxyribonucleosides and deoxyribonucleotides. In dsDNA at low temperatures, formation of C1′• is observed from photo-excitation of G•+ in the 310–480 nm range with no C1′• formation observed ≥520 nm. Illumination of guanine radical cations in 2′dG, 3′-dGMP and 5′-dGMP in aqueous LiCl glasses at 143 K is found to result in remarkably high yields (~85–95%) of sugar radicals, namely C1′•, C3′• and C5′•. The amount of each of the sugar radicals formed varies dramatically with compound structure and temperature of illumination. Radical assignments were confirmed using selective deuteration at C5′ or C3′ in 2′-dG and at C8 in all the guanine nucleosides/tides. Studies of the effect of temperature, pH, and wavelength of excitation provide important information about the mechanism of formation of these sugar radicals. Time-dependent density functional theory calculations verify that specific excited states in G•+ show considerable hole delocalization into the sugar structure, in accord with our proposed mechanism of action, namely deprotonation from the sugar moiety of the excited molecular radical cation.  相似文献   

12.
At slightly acidic pH, the association of two d(5mCCTCACTCC) strands results in the formation of an i-motif dimer. Using NMR methods, we investigated the structure of [d(5mCCTCACTCC)]2, the internal motion of the base pairs stacked in the i-motif core, the dimer formation and dissociation kinetics versus pH. The excellent resolution of the 1H and 31P spectra provided the determination of dihedral angles, which together with a large set of distance restraints, improve substantially the definition of the sugar-phosphate backbone by comparison with previous NMR studies of i-motif structures. [d(5mCCTCACTCC)]2 is built by intercalation of two symmetrical hairpins held together by six symmetrical C•C+ pairs and by pair T7•T7. The hairpin loops that are formed by a single residue, A5, cross the narrow grooves on the same side of the i-motif core. The base pair intercalation order is C9•C9+/5mC1•5mC1+/C8•C8+/C2•C2+/T7.T7/C6•C6+/C4•C4+. The T3 bases are flipped out in the wide grooves. The core of the structure includes four long-lived pairs whose lifetimes at 15°C range from 100 s (C8•C8+) to 0.18 s (T7•T7). The formation rate and the lifetime of [d(5mCCTCACTCC)]2 were measured between pH 6.8 and 4.8. The dimer formation rate is three to four magnitude orders slower than that of a B-DNA duplex. It depends on pH, as it must occur for a bimolecular process involving non cooperative association of neutral and protonated residues. In the range of pH investigated, the dimer lifetime, 500 s at 0°C, pH 6.8, varies approximately as 10−pH.  相似文献   

13.
Vascular tone is controlled by the L-arginine/nitric oxide (NO) pathway, and NO bioavailability is strongly affected by hyperglycaemia-induced oxidative stress. Insulin leads to high expression and activity of human cationic amino acid transporter 1 (hCAT-1), NO synthesis and vasodilation; thus, a protective role of insulin on high D-glucose–alterations in endothelial function is likely. Vascular reactivity to U46619 (thromboxane A2 mimetic) and calcitonin gene related peptide (CGRP) was measured in KCl preconstricted human umbilical vein rings (wire myography) incubated in normal (5 mmol/L) or high (25 mmol/L) D-glucose. hCAT-1, endothelial NO synthase (eNOS), 42 and 44 kDa mitogen-activated protein kinases (p42/44mapk), protein kinase B/Akt (Akt) expression and activity were determined by western blotting and qRT-PCR, tetrahydrobiopterin (BH4) level was determined by HPLC, and L-arginine transport (0–1000 μmol/L) was measured in response to 5–25 mmol/L D-glucose (0–36 hours) in passage 2 human umbilical vein endothelial cells (HUVECs). Assays were in the absence or presence of insulin and/or apocynin (nicotinamide adenine dinucleotide phosphate-oxidase [NADPH oxidase] inhibitor), tempol or Mn(III)TMPyP (SOD mimetics). High D-glucose increased hCAT-1 expression and activity, which was biphasic (peaks: 6 and 24 hours of incubation). High D-glucose–increased maximal transport velocity was blocked by insulin and correlated with lower hCAT-1 expression and SLC7A1 gene promoter activity. High D-glucose–increased transport parallels higher reactive oxygen species (ROS) and superoxide anion (O2 •–) generation, and increased U46619-contraction and reduced CGRP-dilation of vein rings. Insulin and apocynin attenuate ROS and O2 •– generation, and restored vascular reactivity to U46619 and CGRP. Insulin, but not apocynin or tempol reversed high D-glucose–increased NO synthesis; however, tempol and Mn(III)TMPyP reversed the high D-glucose–reduced BH4 level. Insulin and tempol blocked the high D-glucose–increased p42/44mapk phosphorylation. Vascular dysfunction caused by high D-glucose is likely attenuated by insulin through the L-arginine/NO and O2 •–/NADPH oxidase pathways. These findings are of interest for better understanding vascular dysfunction in states of foetal insulin resistance and hyperglycaemia.  相似文献   

14.
In the current work, we investigated the effects of dopamine, an neurotransmitter found in several plant species on antioxidant enzyme activities and ROS in soybean (Glycine max L. Merrill) roots. The effects of dopamine on SOD, CAT and POD activities, as well as H2O2, O2•−, melanin contents and lipid peroxidation were evaluated. Three-day-old seedlings were cultivated in half-strength Hoagland nutrient solution (pH 6.0), without or with 0.1 to 1.0 mM dopamine, in a growth chamber (25°C, 12 h photoperiod, irradiance of 280 μmol m−2 s−1) for 24 h. Significant increases in melanin content were observed. The levels of ROS and lipid peroxidation decreased at all concentrations of dopamine tested. The SOD activity increased significantly under the action of dopamine, while CT activity was inhibited and POD activity was unaffected. The results suggest a close relationship between a possible antioxidant activity of dopamine and melanin and activation of SOD, reducing the levels of ROS and damage on membranes of soybean roots.  相似文献   

15.
The major kinds of heat-induced damage to DNA (depurination, guanine oxidation to 8-oxoguanine, cytosine deamination to uracil) were shown to depend in their extent on the oxygen content in solution. Formation of hydrogen peroxide in water upon heating was enhanced in the presence of D2O and decreased by various scavengers of singlet oxygen, corroborating the involvement of 1O2 in the thermal generation of reactive oxygen species. The aggregate data indicate that all kinds of heat-induced DNA damage in solution arise through this common mechanism.  相似文献   

16.
Acne vulgaris is a chronic inflammatory disorder of the sebaceous follicles. Propionibacterium acnes (P. acnes), a gram-positive anareobic bacterium, plays a critical role in the development of these inflammatory lesions. This study aimed at determining whether reactive oxygen species (ROS) are produced by keratinocytes upon P. acnes infection, dissecting the mechanism of this production, and investigating how this phenomenon integrates in the general inflammatory response induced by P. acnes. In our hands, ROS, and especially superoxide anions (O2 •−), were rapidly produced by keratinocytes upon stimulation by P. acnes surface proteins. In P. acnes-stimulated keratinocytes, O2 •− was produced by NAD(P)H oxidase through activation of the scavenger receptor CD36. O2 •− was dismuted by superoxide dismutase to form hydrogen peroxide which was further detoxified into water by the GSH/GPx system. In addition, P. acnes-induced O2 •− abrogated P. acnes growth and was involved in keratinocyte lysis through the combination of O2 •− with nitric oxide to form peroxynitrites. Finally, retinoic acid derivates, the most efficient anti-acneic drugs, prevent O2 •− production, IL-8 release and keratinocyte apoptosis, suggesting the relevance of this pathway in humans.  相似文献   

17.
《Free radical research》2013,47(10):1280-1290
Abstract

The formation of long-lived reactive protein species of bovine serum albumin (BSA), ovalbumin, casein and casein hydrolyzate with a half-life of 3–5 hours was shown using chemiluminescence induced by X-ray radiation. It was found that long-lived reactive protein species are capable of generating reactive oxygen species (ROS) (H2O2, OH?, HO2?, 1O2) in the aquatic environment over a long period of time in vitro. The interaction of X-ray-irradiated BSA with DNA in vitro led to the formation of 8-oxoguanine (8-oxo-7,8-dihydroguanine), a biomarker of oxidative damage to DNA. Some natural antioxidants are effective scavengers of ROS (inosine, tryptophan, methionine and ascorbate). They protect DNA from the action of long-lived reactive protein species leading to ROS generation and the formation of 8-oxoguanine. The intravenous injection of X-ray radiation-induced, long-lived reactive protein species to rats, as well as the peroral and intraperitoneal administration of these products to mice, gave rise to cytogenetic injuries in the cells of their red bone marrow through the formation of micronuclei in polychromatophilic erythrocytes. The administration of the same natural antioxidants used for in vitro experiments soon after irradiation made it possible to effectively eliminate the genotoxic action of oxidative stress caused by radiation-induced, long-lived reactive protein species. Our data represent clear evidence that the oxidative damage to proteins induced by X-rays is directly involved in the induction of a response to DNA damage in rodents.  相似文献   

18.
Despite a wealth of experimental evidence concerning the efficacy of the biocidal action associated with the TiO2 photocatalytic reaction, our understanding of the photochemical mechanism of this particular biocidal action remains largely unclear. It is generally accepted that the hydroxyl radical (·OH), which is generated on the surface of UV-illuminated TiO2, plays the main role. However, our understanding of the exact mode of action of the hydroxyl radical in killing microorganisms is far from complete, and some studies report that other reactive oxygen species (ROS) (H2O2 and O2·, etc.) also play significant roles. In particular, whether hydroxyl radicals remain bound to the surface or diffuse into the solution bulk is under active debate. In order to examine the exact mode of action of ROS in inactivating the microorganism, we tested and compared the levels of photocatalytic inactivation of MS-2 phage and Escherichia coli as representative species of viruses and bacteria, respectively. To compare photocatalytic microbial inactivation with the photocatalytic chemical degradation reaction, para-chlorobenzoic acid, which rapidly reacts with a hydroxyl radical with a diffusion-limited rate, was used as a probe compound. Two different hydroxyl radical scavengers, tert-butanol and methanol, and an activator of the bulk phase hydroxyl radical generation, Fe2+, were used to investigate their effects on the photocatalytic mode of action of the hydroxyl radical in inactivating the microorganism. The results show that the biocidal modes of action of ROS are very different depending on the specific microorganism involved, although the reason for this is not clear. It seems that MS-2 phage is inactivated mainly by the free hydroxyl radical in the solution bulk but that E. coli is inactivated by both the free and the surface-bound hydroxyl radicals. E. coli might also be inactivated by other ROS, such as O2· and H2O2, according to the present results.  相似文献   

19.
Aerobic organisms contain antioxidant enzymes, such as superoxide dismutase (SOD) and catalase, to protect them from both direct and indirect effects of reactive oxygen species, such as O2·− and H2O2. Previous work by others has shown that Escherichia coli mutants lacking SOD not only are more susceptible to DNA damage and killing by H2O2 but also contain larger pools of intracellular free iron. The present study investigated if SOD-deficient E. coli cells are exposed to increased levels of hydroxyl radical (·OH) as a consequence of the reaction of H2O2 with this increased iron pool. When the parental E. coli strain AB1157 was exposed to H2O2 in the presence of an α-(4-pyridyl-1-oxide)-N-tert-butyl-nitrone (4-POBN)–ethanol spin-trapping system, the 4-POBN–·CH(CH3)OH spin adduct was detectable by electron paramagnetic resonance (EPR) spectroscopy, indicating ·OH production. When the isogenic E. coli mutant JI132, lacking both Fe- and Mn-containing SODs, was exposed to H2O2 in a similar manner, the magnitude of ·OH spin trapped was significantly greater than with the control strain. Preincubation of the bacteria with the iron chelator deferoxamine markedly inhibited the magnitude of ·OH spin trapped. Exogenous SOD failed to inhibit ·OH formation, indicating the need for intracellular SOD. Redox-active iron, defined as EPR-detectable ascorbyl radical, was greater in the SOD-deficient strain than in the control strain. These studies (i) extend recent data from others demonstrating increased levels of iron in E. coli SOD mutants and (ii) support the hypothesis that a resulting increase in ·OH formation generated by Fenton chemistry is responsible for the observed enhancement of DNA damage and the increased susceptibility to H2O2-mediated killing seen in these mutants lacking SOD.  相似文献   

20.
Background and aims Many fruits soften during ripening, which is important commercially and in rendering the fruit attractive to seed-dispersing animals. Cell-wall polysaccharide hydrolases may contribute to softening, but sometimes appear to be absent. An alternative hypothesis is that hydroxyl radicals (OH) non-enzymically cleave wall polysaccharides. We evaluated this hypothesis by using a new fluorescent labelling procedure to ‘fingerprint’ OH-attacked polysaccharides.Methods We tagged fruit polysaccharides with 2-(isopropylamino)-acridone (pAMAC) groups to detect (a) any mid-chain glycosulose residues formed in vivo during OH action and (b) the conventional reducing termini. The pAMAC-labelled pectins were digested with Driselase, and the products resolved by high-voltage electrophoresis and high-pressure liquid chromatography.Key Results Strawberry, pear, mango, banana, apple, avocado, Arbutus unedo, plum and nectarine pectins all yielded several pAMAC-labelled products. GalA–pAMAC (monomeric galacturonate, labelled with pAMAC at carbon-1) was produced in all species, usually increasing during fruit softening. The six true fruits also gave pAMAC·UA-GalA disaccharides (where pAMAC·UA is an unspecified uronate, labelled at a position other than carbon-1), with yields increasing during softening. Among false fruits, apple and strawberry gave little pAMAC·UA-GalA; pear produced it transiently.Conclusions GalA–pAMAC arises from pectic reducing termini, formed by any of three proposed chain-cleaving agents (OH, endopolygalacturonase and pectate lyase), any of which could cause its ripening-related increase. In contrast, pAMAC·UA-GalA conjugates are diagnostic of mid-chain oxidation of pectins by OH. The evidence shows that OH radicals do indeed attack fruit cell wall polysaccharides non-enzymically during softening in vivo. This applies much more prominently to drupes and berries (true fruits) than to false fruits (swollen receptacles). OH radical attack on polysaccharides is thus predominantly a feature of ovary-wall tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号