首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure, development and histochemistry of the seed epidermiswere studied inSolanum melongena L. andS. violaceum Ort. usinglight and scanning electron microscopy. The epidermal cellsat the endosperm mother cell stage of ovule development hadthickened outer periclinal walls, consisting of two layers,a thin inner layer, and a thick outer layer. The latter whichstained positively for pectic substances became further thickenedduring the course of seed development; more so inS. melongena.The inner layer of the outer periclinal wall also was thickenedby depositions of cellulose but remained comparatively thin.The development of the inner periclinal and anticlinal wallstook place by the uneven deposition of concentric layers. Thesesecondary wall thickenings which appeared as pyramids in transversesection stained for cellulose, lignin and pectin. Further unevensecondary thickenings near the outer part of the anticlinalwalls resulted in the formation of projections which were hair-or ribbon-like in appearance. InS. melongena, these projectionsprogressed only a short distance from the anticlinal wall. InS.violaceum, on the other hand, they grew much longer formingstriations on the inside of the outer periclinal wall. InS.melongena, partial removal of the outer periclinal wall by enzymeetching exposed to surface view a beaded appearance of the cellboundaries. Complete erosion of the outer periclinal wall revealedthe hair-like projections of the underlying anticlinal walls.InS. violaceum, enzyme treatment exposed the striations whichformed bridge-like structures over the curves in the anticlinalwalls. Solanum melongena ; Solanum violaceum; seed epidermis; seed structure; seed development; cell wall histochemistry; cell wall projections; cell wall striations  相似文献   

2.
The various pathways of pollen development were investigatedin cultured anthers of Lolium temulentum, Festuca pratensisand the L. multiflorum x F. pratensis hybrid ‘Elmet’.In all three, development from the vegetative cell was the predominantpathway of pollen callus development. However, there were characteristicdifferences in the behaviour of the generative cell. In L. temulentumit remained attached to the pollen wall and degenerated, whereasin F. pratensis it divided. In ‘Elmet’ it detachedfrom the pollen wall and remained undivided. Both polarizedand unpolarized partitioned calluses were observed. Developmentof the fusion product of the vegetative and generative nucleiwere also observed in anthers of L. temulentum. Anomalous grainswere not found to be major source of pollen calluses. Sections of anthers of L. temulentum were used to investigatethe origin of S pollen grains, the small pale-staining grainswhich denote pollen dimorphism. Such grains form out of contactwith the tapetum and are therefore determined before or duringmeiosis (i.e. before harvest of anthers for culture). Sectionswere also used to demonstrate the influence of the durationof pretreatment on the development of the middle layer of theanther wall. Festuca pratensis, Lolium temulentum, Lolium x Festuca, anther culture, haploid, microspore, pollen  相似文献   

3.
Nitrate Supply and the Biophysics of Leaf Growth in Salix viminalis   总被引:2,自引:0,他引:2  
The influence of nitrogen on leaf area development and the biophysicsof leaf growth was studied using clonal plants of the shrubwillow, Salix viminalis grown with either optimal (High N) orsub-optimal (Low N) supplies of nitrate. Leaf growth rate andfinal leaf size were reduced in the sub-optimal treatment andthe data suggest that in young rapidly growing leaves, thiswas primarily due to changes in cell wall properties, sincecell wall extensibility (% plasticity) was reduced in the LowN plants. The biophysical regulation of leaf cell expansion also differedwith nitrogen treatment as leaves aged. In the High N leaves,leaf cell turgor pressure (P) increased with age whilst in theLow N leaves P declined with age, again suggesting that foryoung leaves, cell wall plasticity limited expansion in theLow N plants. Measurements of cell wall properties showed thatcell wall elasticity (%E) was not influenced by nitrogen treatmentand remained constant regardless of leaf age. Key words: Salix, cell wall extensibility, nitrogen nutrition, biophysics of leaf growth  相似文献   

4.
In differentiating sieve elements of Aegilops comosa var. thessalicadictyosomes are abundant and they produce numerous smooth vesicles.Coated vesicles seem to bud from smooth ones. Since both kindsof vesicles appear both in the cytoplasm and in associationwith the plasmalemma, it is proposed that they move to and fusewith the plasmalemma transferring products for cell wall synthesis.During differentiation sub-plasmalemmal microtubules are initiallyscarce and randomly oriented but soon afterwards they becomenumerous and transversely oriented to the long axis. Cellulosemicrofibrils in the cell wall appear to run parallel to themicrotubules and the latter may regulate microfibril orientation. Root protophloem sieve elements develop wave-like wall thickenings,which are, during development, overlaid by microtubules perpendicularto the long axis. Just after maturation these thickenings progressivelybecome smooth and finally the walls appear uniform in thickness.The wave-like wall thickenings may function as stored wall material,utilized in later stages of development when wall material willbe needed and its synthesis will be impossible because of theabsence of a synthesizing mechanism in the highly degraded protoplastsof mature sieve elements. It is suggested that in this way thethickenings may enable root protophloem sieve elements to growand keep pace with the active clongation of the surroundingcells. Aegilops comosa var. thessalica, sieve elements. cell wall, microtubules, dictyosomes, coated vesicles, wave-like thickenings  相似文献   

5.
Briggs  C. L. 《Annals of botany》1995,76(4):429-439
In developing seeds of Solanum nigrum L., wall ingrowths developedat the extreme micropylar and chalazal ends of the embryo sac.In the micropylar region, the wall ingrowths were initiatedat the three-celled endosperm stage starting at the base ofthe zygote then progressing for a short distance chalazalwards.They developed quickly with the most elaborate around the baseof the suspensor. The chalazal wall ingrowths developed alongthe surfaces of the chalazal cup, the antipodal cup and thehypostase. Those along the hypostase were initiated at the four-celled,those in the chalazal and antipodal cups at the 20-celled endospermstages. The most elaborate developed along the base of the antipodalcup; the most simple were along the base of the chalazal cup.Small electron-lucent invaginations of the plasmalemma whichlater became filled with fibrillar material, were the earliestindication of wall ingrowth formation. Removal of the wall ingrowthscommenced at the mid-globular stage of embryo development andwas completed by the mid-heart-shaped stage. In the micropylarregion, wall ingrowth removal was rapid, starting with the lossof the fibrillar component followed by the thinning of the cellwall. However, along the hypostase and antipodal cup, a heterogeneouslayer of varying electron densities and a thinner, more electrondense layer was laid down over the ingrowths. This was followedby the removal of the fibrillar component. The initiation, removaland location of the embryo sac wall ingrowths is discussed inconnection with understanding the nutritional relationshipsbetween maternal tissue, endosperm and embryo.Copyright 1995,1999 Academic Press Wall ingrowths, Solanum nigrum, transfer cells, zone of separation and secretion, hypostase  相似文献   

6.
During microsporogenesis and pollen maturation, the tapetumin anthers of tomato (Lycopersicon esculentum) underwent severalultrastructural changes and ultimately degenerated. The changesobserved related to the secretory function of the tapetum andto the transfer of materials from the cytoplasm to the surfaceof tapetal cells. Electron dense deposits, initially in thevacuoles, disappeared coincident with the appearance of orbiculeson the cell wall. The fibrillar wall of the tapetal cells loosened,presumably to facilitate transfer of materials through the wall.In Addition, membranous fragments were a consistent featurein the tapetum wall and may play a role in transport of materials.The cells of the inner tapetum (towards the connective) andouter tapetum (towards the epidermis) had different ultrastructuralfeatures. The cytoplasm of the outer tapetum was more electrondense and had a higher proportion of dictyosomes and mitochondriathan the inner tapetum, indicating the greater secretory natureof the outer tapetum. The plastids and mitochondria also differedin morphology between the two regions. Degenerations of thetapetal cytoplasm began by the vacuolate microspore stage. Atanthesis, cytoplasm was absent but the orbicular wall of thetapetum remained appressed to the wall of the middle layer ofthe anther.Copyright 1993, 1999 Academic Press Lycopersicon esculentum, microsporogenesis, pollen development, tapetum development, tomato, ultrastructure  相似文献   

7.
BRIGGS  C. L. 《Annals of botany》1996,78(3):295-304
The early developmental sequences in the formation of the Zoneof Separation and Secretion in a hexaploid species of Solanumnigrum L. are described. Ultrastructural changes which occurredduring the development of the embryo/endosperm interface couldbe related to the different stages in the embryo's development.The first step was the completion of the cell wall around thechalazal end of the zygote; a thin wall was formed along theendosperm cell(s) abutting the zygote. From the mature zygotestage to the quadrant stage, minute plasmalemma invaginationsoccurred along the endosperm wall facing the zygote. These invaginationsenlarged, and from the mid-globular stage onwards became filledwith a fine fibrillar material; this material accumulated betweenthe endosperm cell wall and the plasmalemma before being releasedinto the developing periembryonic and intercellular spaces tobecome the extracellular matrix. Cell wall development in theendosperm cells abutting the embryo followed an unusual path.During the quadrant stage, whilst the outer embryo wall increasedin thickness due to vesicle fusion, the endosperm cell wallfacing the embryo showed a loosening of the wall fibrils aswell as partial separation of these same endosperm cells fromeach other. From the early-globular stage, the endosperm cellwalls opposite the embryo became electron-translucent, disappearinginto the extracellular matrix. Enzymic secretions by the embryomay account for the alteration in the abutting endosperm cellwalls. Enzymic activity may also explain the development ofa homogenous electron-opaque layer over the outer embryo wallas well as the differences in the width of the fibrillar layerwhich accumulated around the cotyledons as the embryo grew throughthe Zone of Separation and Secretion. The potential roles ofthe extracellular matrix are briefly discussed. Solanum nigrum L.; embryo/endosperm interface; Zone of Separation and Secretion; embryo development; cellular endosperm  相似文献   

8.
WHITE  JULIE 《Annals of botany》1990,65(3):231-239
The development of the microspore mother cell walls in Actinidiadeliciosa (kiwifruit) has been studied using light and electronmicroscopy. The microspore mother cell wall is similar, histochemically,and structurally in anthers from both functionally staminateand functionally pistillate flowers. Deposition, which beginsduring early prophase I, produces an electron-dense multilaminatedwall layer (layer a) and by the end of meiosis I a thick electron-lucentlayer (layer b) to the inside of this multilayered wall. Thereasons for histochemical differences and similarities betweenthese layers are discussed. The original primary wall persistsuntil the late uninucleate microspore stage. Layer (b), whichis probably mainly callose, dissolves at the late tetrad/earlymicrospore stage while layer (a), which probably also containsother polysaccharides, persists and dissolves concurrently withthe primary wall. Actinidia deliciosa, kiwifruit, microspore mother cell wall, callose, histochemistry, light microscopy, electron microscopy, male sterility  相似文献   

9.
We report a study in which we estimate by means of non-equilibriumprocesses the value of an effective partition coefficient, x,a parameter that we use to take into account the non-ideal behaviourof the electrolyte of the external medium in the cell wall space.This parameter is defined by the ratio of the salt partitioncoefficient to the activity of the non-diffusing charges. Tothat purpose, concentration potential in NaCl, LiCI and CuCl2solutions was measured across an isolated cell wall of Nitellaflexilis at different pH. No significant difference appearedbetween the potential values measured in the presence of NaClor LiCl (pH 5.5, 4.0 and 3.0). At pH 3.0, in CuCl2 solutions,the Nitella wall behaved as an uncharged membrane. Two methods—high concentrations and least-squares approximation-wereused to calculate from these results the value of the effectivepartition coefficient. Both gave similar values of x At a givenpH, the values of x are independent of the concentration ofthe external medium over a large range of concentration ratios.The activity of the exchange sites was estimated by the experimentallydetermined fraction of absorbed monovalent cations. The ionicconcentrations in the wall space were calculated at pH 5.5 and3.0 by introducing the values of x in the relations which correlatethem to the ionic concentrations in the wall for that givenvalue of the activity of the carboxylate sites. From their values,it appears that the negative fixed charges of the wall werefunctionally shaded by the condensation of a part of the adsorbedmonovalent cations. The activity of the former was, therefore,reduced to a value considerably lower than that estimated bythe cationic exchange capacity during equilibrium processes. Key words: Nitella flexilis (L.) Ag., cell wall, concentration potential, partition coefficient, ion condensation  相似文献   

10.
Briggs  C. L. 《Annals of botany》1993,72(4):303-313
Endosperm development in Solanum nigrum was ab initio cellular.During early seed development, a Zone of Separation and Secretion(ZSS) differentiated within the endosperm. There were threephases in the formation of the ZSS. Phase I—stainabilityof the cell walls and middle lamella increased followed by numeroussmall plasmalemma invaginations (blebs) which became filledwith a fibrillar material. Phase II—the plasmalemma withdrewfrom the cell wall as a fibrillar lipo-carbohydrate matrix accumulatedoutside the plasmalemma. The middle lamella was gradually removedfrom between the cells forming the central axis of the cone.Phase III—the lipo-carbohydrate matrix continued to accumulateoutside the plasmalemma and also within the developing intercellularspaces. Some axial cells were completely separated from theremaining ZSS cells and became embedded in the matrix. The formationof the ZSS did not entail the destruction of the endosperm cellsand cell divisions were frequent. The ZSS was initially cone-shaped,capping the globular embryo. As the embryo sac enlarged, theZSS continued to differentiate. This resulted in a narrow curvedcorridor through the peripheral region of the endosperm whichterminated above the vascular trace. The embryo grew throughthe centre of the ZSS and pushed aside the separated axial cells.The ZSS facilitated the growth of the embryo through the restof the endosperm.Copyright 1993, 1999 Academic Press Lipo-carbohydrate matrix, extracellular matrix, endosperm development, Solanum nigrum, Zone of Separation and Secretion  相似文献   

11.
The aerial shoots of Equisetum hyemale L. var. affine (Engelm.)A. A. Eat. were examined with the electron microscope as partof a continuing study of sieveelement development in the lowervascular plants. Young E. hyemale sieve elements are distinguishablefrom all other cell types within the vascular system by thepresence of refractive spherules, proteinaceous bodies whichdevelop within dilated portions of the endoplasmic reticulum(ER). Details of cell wall thickening differ between protophloemand metaphloem sieve elements. Following cell wall thickeningthe ER increases in quantity and aggregates into stacks. Shortlythereafter, nuclear degeneration is initiated. During the periodof nuclear degeneration some cytoplasmic components-dictyosomes,microtubules and ribosomes-degenerate and disappear, while organellessuch as mitochondria and plastids persist. The latter undergostructural modifications and become parietal in distribution.Eventually the massive quantities of ER are reduced, leavingthe lumen of the cell clear in appearance. At maturity the plasmalemma-linedsieve element contains a parietal network of tubular ER, aswell as mitochondria, plastids, and refractive sphemh At thistime many of the spherules are discharged into the region ofthe wall. Sieveelement pores occur in both lateral and end walls.At maturity many pores are traversed by large numbers of ERmembranes. The metaphloem sieve elements of the mid-internodalregions apparently are sieve-tube members. The connections betweenmature protophloem sieve elements and pericycle cells are associatedwith massive wall thickenings on the pericyclecell side.  相似文献   

12.
The ultrastructure and development of oil idioblasts in theshoot apex and leaves in Annona muricata L. are described, andthree arbitrary developmental stages are distinguished: cellsin which no additional cell wall layers have been depositedagainst the initial primary cell wall, possessing an electron-translucentcytoplasm and distinct plastids which lack thylakoids (stage1); cells in which a suberized layer has been deposited againstthe primary wall (stage 2, the cytoplasm resembles that of thepreceding stage), and cells in which an additional inner walllayer has been deposited against the suberized layer, whichincreases in thickness with development (stage 3). In this stagean oil cavity is formed, surrounded by the plasmalemma, andattached to a bell-like protrusion of the inner wall layer,the cupule. A complex membranous structure occurs next to thecupule. Smooth tubular endoplasmic reticulum (ER), appearingas linearly arranged tubules, and groups of crystalline bodieswith an almost hexagonal outline are present. The final stagewas further subdivided into three subgroups (a, b, c) basedon the extent of the oil cavity, its contents, and the compositionof the cytoplasm, and increasing thickness of the inner walllayer. The oil is probably synthesized in the plastids, releasedinto the cytoplasm, and then passed through the plasmalemmasurrounding the oil cavity. Oil idioblasts, Annona muricata L., suberized layer, inner wall layer, oil cavity, cupule, smooth tubular ER, crystalline bodies  相似文献   

13.
LYSHEDE  OLE B. 《Annals of botany》1992,69(4):365-371
The seeds of Cuscuta pedicellata have been investigated by transmissionand scanning electron microscopy. Additional observations havebeen made on seeds of C. campestris by SEM only. The seed coatconsists of an outer single epidermis, two different palisadelayers, and an inner multiparenchyma layer. The outer epidermalwall in C. pedicellata has a thick cuticle and zones rich inpectic substances. The thicker ‘U-shaped’ cell wallsin the outer palisade layer are strengthened by a wall layerof hemicellulose. The inner palisade layer has thick walledcells with a ‘light line’. The inner cell wall ofthe compressed multiparenchyma layer has a thin cuticle. A fairlythick cuticle is positioned directly on the endosperm surface.The aleurone cell walls are different from the remaining endospermwalls. The latter are thick and believed to be of galactomannans.There is a ‘clear’ zone between the plasmalemmaand the cell wall in the aleurone cells. The embryo cells arepacked with lipids and proteins. In Cuscuta campestris mostendosperm has been absorbed during the seed development. Theembryo apex has two minute leaf primordia. The features of theCuscuta seeds are discussed in relation to functional and environmentalconditions. Cuscuta pedicellata, Cuscuta campestris, seed, seed coat, cuticle, cell walls, endosperm, aleurone cells, galactomannan, embryo, TEM, SEM  相似文献   

14.
The cell wall of Enteromorpha intestinalis (a marine alga) hasbeen found to behave as a weakly cross-linked cation exchangerin NaCl solutions from 0.1–1020 mMolal (0.1–1000mMolar). Anion adsorption could be described by Freundlich isothermsover this concentration range. The large anion, inulin carboxylate,was found to be a tracer of the anion free space of plant tissuesonly in salt solutions above 10 mMolal. The cell wall of Enteromorphahas a cation exchange capacity of about 2500 µ mol g–1dry wt. (Na+ form). The cell wallvolume is a complex functionof pH and the NaCl concentration. As a result, the cation exchangecapacity is only predictable on a dry weight basis. The fixednegative charges of the cell wall have a pKa of2 in situ and1.75 in vitro, and seem to be a mixture of sulphate and carboxylsugar esters. The applicability of the Donnan equation to plant cell wallsis discussed. Interpretation of the cell wall as a single thermodynamicphase is shown to be inappropriate. A large proportion of thecell wall solution is unaffected by the fixed anions.  相似文献   

15.
Cell wall thickness of the xylem tracheary elements was measuredin the proto- and metaxylem of the Allium cepa L. adventitiousroot. Measurements were taken in root fragments of known age(1, 3, 5, 7 and 9 d) located in either the basal or medio-apicalzone. Tracheary elements in the protoxylem matured within ashorter period of time than those in the metaxylem. Final cellwall thickness was greater in metaxylem than in protoxylem components.The cell wall thickening in the tracheary elements in both proto-and metaxylem was more rapid in the basal zone of the root thanin the medio-apical zone. Additionally, cell walls of the maturetracheary elements were thicker in the basal zone than in areasfurther from the bulb. Allium cepa, onion, root, cell wall, xylem maturation  相似文献   

16.
Metabolite deposition during seed development was examined histochemicallyin Trifolium repens by light- and fluorescence microscopy. Allendosperm haustorium at the chalazal pole of the embryo sacand wall protrusions in cell walls of the suspensor and theembryo sac suggest that transfer of metabolites from maternalto offspring tissue takes place primarily at these sites. Thisis further supported by prominent cutinization of the interpolarregion of the embryo sac wall, accumulation of starch in integumentaltissue at the embryo sac poles, and breakdown of interpolarendothelial cells. Decomposition of osteosclereid starch isfollowed by accumulation in the cellular endosperm and subsequentlyin the embryo parallel to endosperm degradation. The starchaccumulates gradually inward from the subepidermal cells ofthe embryo to the stele. Protein bodies are formed in the vacuolesalong the tonoplast, later to be cut off in vesicles releasedinto the cytoplasm. At maturity the embryo is packed with proteinand starch, but without lipid reserves. Phytin is observed inthe protein bodies. The mature embryo is surrounded by a proteinand starch containing aleurone layer which originates from theendosperm.Copyright 1994, 1999 Academic Press White clover, protein, starch, cuticle, embryo sac wall  相似文献   

17.
Stress relaxation properties of the cell wall of growing intact plants   总被引:1,自引:0,他引:1  
The cell wall of dark-grown Avena coleoptiles and the epidermisof light-grown mungbean hypocotyls was subjected to stress-relaxationanalysis and the following results were obtained. 1. Actively growing apical regions of the organs, either coleoptilesor hypocotyls, had certain threshold values of minimum stress-relaxationtime, TO, 0.04 sec for coleoptile cell wall and 0.03 sec forthe epidermal cell wall of hypocotyls. The cell wall of thebasal region of the organs, which were mature and not growing,had a higher value of To. 2. When the apical regions of the organs, either coleoptilesor hypocotyls, ceased to grow, their cell walls showed TO valuesabove these thresholds. 3. The relaxation rate, b, was small in the cell wall of activelygrowing regions of the organs, compared with that of non-growingregions. 4. The maximum relaxation time, Tm, was variable and no significantrelationship with growth capacity was found. 5. The extensibility, mm/gr, was large not only in activelygrowing regions of the organs but also in fully grown regions,suggesting that the value represents complex properties of thecell wall including the history of cell wall extension. From these results, we concluded that biochemical modificationsoccur in the cell wall matrix of actively growing organs ofeither monocots or dicots, and these are the bases of the capacityof the cell wall to extend and are represented chiefly by Toand possibly by b. (Received August 12, 1974; )  相似文献   

18.
The wilty tomato mutant flacca and the normal variety RheinlandsRuhm were compared in terms of: (1) potassium transport intoand out of the guard cells, (2) cell wall properties which includeprotein, hydroxyproline and peroxidase activity, and (3) activityof indol-3yl-acetic acid oxidase. Also studied were the effectsof auxin on stomatal behaviour and peroxidase activity whenapplied to normal plants during development, and the short-termeffect of abscisic acid on the resistance of flacca stomatato closure under plasmolysis. Potassium transport, wall protein and hydroxyproline all seemedto be equal in mutant and normal plants. Peroxidase activitywas higher in the soluble and wall fractions of the mutant,and decreased toward normal in the mutant treated with abscisicacid. More stomata were open and peroxidase activity was higherin normal plants treated with auxin during development. Thepercentage of open stomata under plasmolysis was lower and theiraperture size was smaller in the epidermal strips taken fromabscisic-acid-treated mutant plants than from control mutantplants.  相似文献   

19.
Studies were carried out on structural and cytochemical aspectsof the stigma and style ofVitis vinifera . The stigma is ofthe wet papillate type with a continuous cuticle and pellicle.During the development of the papillae, the cell walls increasein thickness and produce a secretion product constituted oflipids that pass through the wall forming the exudate. The styleis solid with a central core of transmitting tissue which hasconspicuous intercellular spaces that increase remarkably fromthe periphery to the centre where the cuticle is present. Theintercellular spaces, where the pollen tubes grow, contain amatrix that includes polysaccharides, pectic substances andscattered areas of lipidic nature. Cytochemistry; stigma; style; ultrastructure; Vitis vinifera  相似文献   

20.
Daily analysis of anther samples during flower development hasenabled an estimation of the duration of defined developmentalperiods in pollen of the grass Phalaris tuberosa. A similarsequence of pollen development has been established for ryegrass,Lolium perenne, where changes in activity of wall enzymes havebeen followed using quantitative cytochemical methods. Acidphosphatase, an intine enzyme, showed two periods of activity:during the vacuolate period corresponding to deposition of theintine polysaccharides; and in the maturation period correspondingto cytoplasmic activity. Non-specific esterase showed greatestactivity in the parietal tapetal cells until their dissolutionearly in the vacuolate period when an increase in pollen-associatedactivity occurred. These changes provide additional evidencefor the transfer of tapetal proteins to exine sites. Lolium perenne L., Phalaris tuberosa L., ryegrass, canary grass, pollen development, quantitative cytochemistry, enzyme activities, acid phosphatase, esterase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号