首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The calcium-binding vesicles from the green alga Mougeotia scalaris were isolated and characterized after staining in vivo by neutral red or rhodamine B. They were found to possess, a protonated group with a pKa-9.9, typifying phenolic hydroxyl groups; upon titration, both, phenolic compound(s) and vital dye were concomitantly released from the vesicular matrix. A shift in peak absorbance from 450 nm to 540 nm of the vitally stained vesicles indicated that the neutral form of neutral red was bound to the vesicular, matrix as an intermediate form, stabilized via intermolecular hydrogen bonds to the phenolic compound(s). Up to 8.5.109 dye molecules were calculated to be adsorbed to a mean-size vesicle. Analysis of Langmuir adsorption isotherms, indicated that there were two binding sites each for both neutral red and rhodamine B. The isolated vesicles were devoid of calcium, probably because vesicular calcium, bound to the vesicle matrix, was displaced upon dye binding. Dye adsorption to the vesicles in vivo results in substantial inhibition of the reorientational movement of the Mougeotia chloroplast and is explained by dye-mediated disorder of the cellular calcium homoeostasis.Abbreviations NR neutral red - RB rhodamine B - SDS sodium dodecyl sulfate This paper is part of the Ph.D. thesis of F. Grolig at Justus-Liebig-Universität Giessen, FRG  相似文献   

2.
Summary Since photo-induced orientation movement of a single, ribbon-shaped chloroplast in each cell of the filamentous green algaMougeotia is inhibited in the presence of cytochalasin B, actin is thought to be involved in the process of chloroplast movements. However, this possibility remains to be proved. A specific class of cytoplasmic filaments, which emerge from the advancing front of the moving chloroplast, can be seen by differential interference contrast (DIC) microscopy. However, no one has yet succeeded in defining the nature of these filaments. We have been able to stain the actin filaments (AFs) associated with the moving chloroplast with fluorescein-conjugated phalloidin (FP) after pre-treatment withm-maleimidobenzoyl N-hydroxysuccinimide ester (MBS). No filamentous structures were observed in cells that had been pre-irradiated with low-fluence rate red light. However, transversely oriented fluorescent filaments appeared at the front edge of the moving chloroplast when it began to rotate under irradiation with high-fluence rate white light. These filaments disappeared after completion of the orientation movement, suggesting the simultaneous appearance of AFs and the orientation movement of the chloroplast. Thick cytoplasmic strands connecting the edge of the chloroplast with the parietal cytoplasm were often seen by DIC microscopy before and after completion of the high-fluence rate orientation movement. These thick cytoplasmic strands could not be stained by FP, but were often stained by 3,3-dihexyloxacarbocyanine iodide (DiOC6(3)), suggesting that they are transvacuolar strands that include endoplasmic reticulum.  相似文献   

3.
H. Gabryś 《Planta》1985,166(1):134-140
The profile-to-face chloroplast movement in the green alga Mougeotia has been induced by strong blue and near-ultraviolet light pulses (6 J m-2). Simultaneously, strong red or far-red light (10 W m-2) was applied perpendicularly to the inducing beam. The response was measured photometrically. Against the far-red background the reciprocity law was found to hold for pulse durations varying two orders of magnitude. The action spectrum exhibited a maximum near 450 nm and a distinct increase in near-ultraviolet. The time-course and the spectral dependence of pulse responses of chloroplasts in Mougeotia were similar to those recorded for other plants which are sensitive only to blue. This points to an alternative sensor system active in the short-wavelength region in addition to the phytochrome system.Abbreviations FR far-red light - Pr red absorbing form of phytochrome - Pfr far-red absorbing form of phytochrome - R red light This paper is dedicated to the memory of Professor Jan Zurzycki  相似文献   

4.
Summary F-actin was localized inMougeotia interphase cells by rhodamine phalloidin (RLP) using an extended, formaldehyde-based fixation protocol, which included a minimal concentration of 0.05% (v/v) glutardialdehyde and stabilization of the calcium-binding vesicles by presaturation with neutral red. Staining revealed a low level of RLP-fluorescence throughout the cytoplasm. An enhanced level of RLP-fluorescence was found around the nucleus and in mostly two parallel fringes along each longitudinal chloroplast edge; also close to the chloroplast edge, quite regularly spaced patches of RLP-fluorescence were seen possibly associated with dictyosomes. The diffuse staining indicates lack of F-actin bundles inMougeotia filamentous cells, in contrast toSpirogyra interphase cells orMougeotia protoplasts. The observations upon staining with RLP confirm previous findings by electron microscopy and indicate seemingly single actin filaments throughout the entireMougeotia filamentous cell. Thus, a special F-actin organization is evident here which for the chloroplast movement is in support of the hypothesis of pigment regulated plasmalemma anchorage sites to actin filaments.Abbreviations CaBV calcium-binding vesicle - DIC differential interference contrast - EGTA ethyleneglycol-bis-(-aminoethyl ether) N, N, N, N tetraacetic acid - FA formaldehyde - GA glutardialdehyde - MFSB microfilament stabilizing buffer - PIPES piperazine-N, N-bis(2-ethanesulfonic acid) - RLP rhodamine (labeled) phalloidin Dedicated to the memory of Professor Oswald Kiermayer  相似文献   

5.
Conjugatophycean green algae, such as Mougeotia and Mesotaenium, are presumably the most ancient organisms to show phytochrome-mediated photomodulatory processes, i.e. chloroplast reorientational movements. Experiments have provided striking evidence for a dichroic mode of light absorption by the phytochrome molecules located at the periphery of the cylindrical cell; in addition, the transition moment of the chromophoric group of phytochrome has been shown to change by a fixed angle upon conversion of Pr to Pfr and vice versa. Consequently, a hypothesis has been put forward involving a tetrapolar phytochrome gradient at the plasmalemma. This presumed pigment pattern precisely controls chloroplast reorientation in the low-irradiance response. Intriguingly, a blue-light absorbing pigment is expressed in Mougeotia as well, which also mediates low-irradiance response via a presumed tetrapolar gradient, apparently independent of the phytochrome. Two hypotheses for the controlling mechanism of chloroplast reorientation have been put forward:
  • a) Coupling of the influx of calcium through the plasmalemma to the tetrapolar gradient of the sensor pigment proper, resulting in a tetrapolar gradient of calcium in the cytoplasm. This is the “reorientation via calcium” hypothesis.
  • b) Coupling of actin anchorage sites on the plasmalemma to the tetrapolar gradient of the sensor pigment proper, resulting in a tetrapolar gradient of actin anchorage sites. Cytoplasmic calcium, released from internal stores or taken up through the plasmalemma, triggers actomyosin interaction. This is the “reorientation via anchorage sites” hypothesis.
Consistent with the latter hypothesis, photoregulation by two steps seems to be indicated, (i) cytoplasmic initiation of actomyosin interaction, (ii) the graded formation of plasmalemma anchorage sites for actin filaments.  相似文献   

6.
Summary Mougeotia cells with chloroplasts oriented in profile have been irradiated with small spots of monochromatic red polarized light in order to induce chloroplast movement.In these experiments, four factors have been varied: 1. the orientation of the vibration plane of the light in relation to the cell axis, 2. the localization of the spot, i. e. irradiation of the chloroplast or the cytoplasm, 3. the spot size, and 4. the duration of the irradiation.As a result of our experiments, we conclude that the photoreceptor molecules responsible for the light-induced chloroplast movement are localized in the cytoplasm.As the photoreceptor of this reaction is the well known phytochromesystem, we may assume that also in other plants the phytochrome is localized in the cytoplasm rather than in the chloroplast.

Mit 9 Textabbildungen  相似文献   

7.
During the first day of development, fertilized eggs of fucoid algae generate an embryonic axis and commence rhizoid growth at one pole. Using Fucus distichus (L.) Powell, F. vesiculosus L. and Pelvetia fastigiata (J.Ag.) DeTony we have investigated the role of calcium in axis formation and fixation as well as in tip growth. The intracellular distribution of membrane-associated calcium was visualized with the fluorescent calcium probe chlorotetracycline (CTC). Punctate fluorescence associated with organelle-like structures was found in conjunction with diffuse staining at all developmental stages. This membrane-associated calcium remained uniformly distributed throughout the cortical cytoplasm while the axis was established, but increased in the rhizoid protuberance at germination. In subsequent development, fluorescence was restricted to the cortical cytoplasm at the elongating tip and at sites of crosswall biosynthesis.The requirement for Ca2+ uptake during development was investigated through inhibition studies; influx was impaired with transport antagonists or by removal of extracellular calcium. Both treatments curtailed germination and tip elongation but had little effect on axis polarization. Reductions in external calcium that interfered with elongation also markedly reduced the apical CTC fluorescencence, indicating that calcium uptake and localization are prerequisites for tip growth. This apical Ca2+ is probably involved in the secretory process that sustains tip elongation. By contrast, calcium was not implicated in the generation of an embryonic axis.Abbreviations ASW artificial seawater - CTC chlorotetracycline - DU developmental unit - EGTA erhylene glycol bis(amino-ethyl ether) N,N,N1,N1–tetraacetic acid - NPN N-phenyl-1-napthylamine  相似文献   

8.
The cell wall of the green alga Mougeotia was enzymatically digested by macerase and cellulysin. Released protoplasts were spread on poly-L-ornithine, formvar-carbon-coated grids, and cell fragments were collected for structural characterization. Large numbers of 5–7 nm filaments are seen which may be decorated with heavy meromyosin (HMM), a digest product of muscle myosin that binds specifically to actin, supporting the hypothesis that the phytochrome-mediated chloroplast movements in these algae are driven by a contractile complex of actomyosin.Abbreviation HMM heavy meromyosin Dedicated to Professor Wolfgang Haupt on the occasion of his 60th birthday  相似文献   

9.
G. Wagner  Karin Klein 《Protoplasma》1981,109(1-2):169-185
Summary The single, ribbon-shaped chloroplast in the filamentous green algaMougeotia performs orientational movements with respect to light. The chain of reaction involves phytochrome as the photoreceptor pigment to perceive the light signal differentiated by wavelength and direction, calcium probably to convert the light signal into a chemical message and actomyosin to respond to this message and to move the chloroplast accordingly.Precise reorientation of the chloroplast is proposed to be brought about by a dual function of phytochrome: regulation of the cellular level of calciumand regulation of membrane anchorage sites to actin.The Institute where ProfessorKamiya did early research together with ProfessorKüster.  相似文献   

10.
Chloroplast orientation in the green alga Mougeotia has been induced by unidirectional red or blue light, given continuously during one hour. In addition, part of the preparations obtained scattered strong far-red light simultaneously with the orienting light. This far-red light completely abolished the response to red light, consistent with phytochrome as the sensor pigment for orientation in Mougeotia. In blue light, however, the response was completely insensitive to far-red light, thus pointing to a different sensor pigment in the shortwavelength region.Abbreviation Pfr far-red-absorbing form of phytochrome  相似文献   

11.
The calcium vesicles of the green alga Mougeotia (G. Wagner and R. Rossbacher, 1980, Planta 149, 298–305) were isolated for characterization in vitro by fractionation of algal homogenate on sucrose density gradients. A new technique, based on vital staining by neutral red or rhodamine B, permitted isolation. Minimum dye binding to the calcium vesicles prevented desintegration, and for isolation a single, thoroughly defined centrifugation step sufficed, facilitated by the exceptionally high vesicular density of 1.3 g· cm-3. Neutral red in particular seems to be accumulated by the vesicles via hydrogen bonds to abundant phenolic hydroxyl groups which, reversibly bound to an as yet undefined vesicle core, may well provide coordination sites for the observed calcium binding.Dedicated to Professor Wilhelm Nultsch on the occasion of his 60th birthdayA preliminary version of this paper has been presented at Tagung der Deutschen Gesellschaft für Zellbiologie (Grolig and Wagner 1985). This paper is part of the Ph. D. thesis of F. Grolig at Justus-Liebig-Universität Giessen  相似文献   

12.
M. E. Galway  A. R. Hardham 《Protoplasma》1986,135(2-3):130-143
Summary Microtubule reorganization and cell wall deposition have been monitored during the first 30 hours of regeneration of protoplasts of the filamentous green algaMougeotia, using immunofluorescence microscopy to detect microtubules, and the cell-wall stain Tinopal LPW to detect the orientation of cell wall microfibrils. In the cylindrical cells of the alga, cortical microtubules lie in an ordered array, transverse to the long axis of the cells. In newly formed protoplasts, cortical microtubules exhibit some localized order, but within 1 hour microtubules become disordered. However, within 3 to 4 hours, microtubules are reorganized into a highly ordered, symmetrical array centered on two cortical foci. Cell wall synthesis is first detected during early microtubule reorganization. Oriented cell wall microfibrils, co-aligned with the microtubule array, appear subsequent to microtubule reorganization but before cell elongation begins. Most cells elongate in the period between 20 to 30 hours. Elongation is preceded by the aggregation of microtubules into a band intersecting both foci, and transverse to the incipient axis of elongation. The foci subsequently disappear, the microtubule band widens, and microfibrils are deposited in a band which is co-aligned with the band of microtubules. It is proposed that this band of microfibrils restricts lateral expansion of the cells and promotes elongation. Throughout the entire regeneration process inMougeotia, changes in microtubule organization precede and are paralleled by changes in cell wall organization. Protoplast regeneration inMougeotia is therefore a highly ordered process in which the orientation of the rapidly reorganized array of cortical microtubules establishes the future axis of elongation.  相似文献   

13.
A cDNA clone encoding phytochrome (apoprotein) of the zygnematophycean green alga Mougeotia scalaris has been isolated and sequenced. The clone consisted of 3372 bp, encoded 1124 amino acids, and showed strain-specific nucleotide exchanges for M. scalaris, originating from different habitats. No indication was found of multiple phytochrome genes in Mougeotia. The 5 non-coding region of the Mougeotia PHY cDNA harbours a striking stem-loop structure. Homologies with higher-plant phytochromes were 52–53% for PHYA and 57–59% for PHYB. Highest homology scores were found with lower-plant phytochromes, for example 67% for Selaginella (Lycopodiopsida), 64% for Physcomitrella (Bryopsida) and 73% for Mesotaenium (Zygnematophyceae). In an unrooted phylogenetic tree, the position of Mougeotia PHY appeared most distant to all other known PHYs. The amino acids Gly-Val in the chromophore-binding domain (-Arg-Gly-Val-His-Gly-Cys-) were characteristic of the zygnematophycean PHYs known to date. There was no indication of a transmembrane region in Mougeotia phytochrome in particular, but a carboxyl-terminal 16-mer three-fold repeat in both, Mougeotia and Mesotaenium PHYs may represent a microtubule-binding domain. Unexpected for a non-angiosperm phytochrome, its expression was autoregulated in Mougeotia in a red/far-red reversible manner: under Pr conditions, phytochrome mRNA levels were tenfold higher than under Pfr conditions.  相似文献   

14.
A soluble protein was isolated from Mougeotia by chloropromazine-sepharose 4 B affinity chromatography. The protein matches the properties of calmodulin in terms of heat stability, Ca2+-dependent electrophoretic mobility in sodium-dodecyl-sulfate polyacrylamide gels, and its ability to activate cyclic nucleotide phosphodiesterase in a Ca2+-dependent manner. Phytochrome-mediated chloroplast reorientational movement in Mougeotia was inhibited by the calmodulin antagonist trifluoperazine, a hydrophobic compound, or N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), a hydrophilic compound; 50% inhibition (IC50) of chloroplast movement is caused by 20–50 mol l-1 trifluoperazine or 100 mol l-1 W-7. The Ca2+-calmodulin may act as an intermediate in the chloroplast reorientational response in Mougeotia governed by phytochrome.Abbreviations EGTA ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - SDS sodium dodecyl sulfate - W-7 N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide  相似文献   

15.
Gottfried Wagner 《Planta》1974,118(2):145-157
Summary Some ionic relations of the filamentous green alga Mougeotia sp. have been analyzed under different light conditions. Data from influx and efflux measurements using 86Rb+ and 36Cl- fit the model of three cellular compartments (cell wall, cytoplasm, vacuole) in series. This result is remarkable, since in a Mougeotia cell at least two thirds of the cytoplasmic compartment are occupied by the cell-filling, flat and nearly rectangular chloroplast which is axially oriented. The chloroplast is concluded to be part of the cytoplasmic flux compartment.Photosynthetically saturating irradiances of continuous white light enhance the active and passive fluxes of K+ and Cl- at the plasmalemma by a factor of 3. Photosystem II is responsible for the light-dependent increase of the uptake of Cl- (36Cl-) whereas the uptake of K+ (86Rb+) depends additionally on energy from photosystem I.Ion flux measurements performed after irradiations with red and far-red, respectively, show that the fluxes of K+ and Cl- across the plasmalemma are not affected by the state of phytochrome.  相似文献   

16.
Blooms ofChrysochromulina breviturrita Nich. (Prymnesiophyceae) have been found to be restricted to lakes above pH 5.5 even though the alga is able to tolerate pH 4.0 in laboratory culture. A possible explanation is the increased transparency in acidifying lakes and a sensitivity ofC. breviturrita to high light intensities. A comparison was made withMougeotia sp., a filamentous green alga which co-occurs in moderately acidic lakes and has a similar pH tolerance range. This alga forms dense, floating mats or amorphous clouds in the upper littoral zone, where it would be exposed to full sunlight irradiances. In cultures ofC. breviturrita, prolonged exposures to 1600 μE · m−2 · s−1 (I0′) resulted in reductions in cell yield which were dependent age at the onset of exposure to high light intensity. Only cultures exposed to high light intensities during late stationary phase were able to recover to control levels and no recovery occurred if these cultures were nitrogen deficient.Mougeotia was more tolerant of both high light intensity and nitrogen limitation during the recovery period. The inability ofC. breviturrita to recover from the effects of high light intensity during nitrogen deprivation may be particularly important in small, stratified lakes which are undergoing acidification. The slow rate of vertical circulation, and increasing transparency, would prolong exposure of the alga to the high irradiance levels of nutrient-deficient epilimnetic waters. This suggests that the geographic distribution ofC. breviturrita may be explained in part by the increasing light intensities in lakes undergoing acidification.  相似文献   

17.
Protoplasts of the filamentous green alga Mougeotia sp. are spherical when isolated and revert to their normal cylindrical cell shape during regeneration of a cell wall. Sections of protoplasts show that cortical microtubules are present at all times but examination of osmotically ruptured protoplasts by negative staining shows that the microtubules are initially free and become progressively cross-bridged to the plasma membrane during the first 3 h of protoplast culture. Cell-wall microfibrils areoobserved within 60 min when protoplasts are returned to growth medium; deposition of microfibrils that is predominantly transverse to the future axis of elongation is detectable after about 6 h of culture. When regenerating protoplasts are treated with either colchicine or isopropyl-N-phenyl carbamate, drugs which interfere with microtubule polymerization, they remain spherical and develop cell walls in which the microfibrils are randomly oriented.  相似文献   

18.
In intergeneric fusion fromMougeotia andZygnema protoplasts, the fate of fusion products, as well as nuclei and chloroplasts, could be classified according to the number of protoplasts involved from the two algae. Stable elongation growth occurred only in products of groups involving one protoplast from one alga and several protoplasts from the other alga. The features of the elongating products were those of the alga more numerously represented. The different nuclei combined by fusion failed to co-exist. In the groups involving one protoplast from one alga and several from the other, the nucleus from the former degenerated in an early period and only the nuclei from the latter were maintained. Also, the different chloroplasts combined did not co-exist. The genus of the chloroplasts maintained coincided with that of the nuclei maintained. The chloroplasts from the other genus degenerated gradually. An early morphological change in the degenerating chloroplasts was seen in the quantity of starch grains. Later, the chloroplasts generally became rounded, In degeneratingZygnema chloroplasts, thylakoid stacking was prominent. Without collapse of the thylakoid or accumulation of plastoglobules, the degenerating chlorplasts showed rupture of the chloroplast envelope.  相似文献   

19.
Organelles in the cortical cytoplasm of the siphonous green alga Bryopsis display various types of motile activities. One of them, saltatory movement along axially oriented linear tracks is typical for mitochondria and other small particles. A method is described which allows in vitro observation of such movements in thin layers of cytoplasm extruded from the alga and attached to a poly-l -lysine coated glass surface. By comparing video recordings of motile activities with the position of cytoskeletal elements visualized by immunofluorescence in the same area of a cytoplasmic exudate, it can be shown that tracks along which particles have moved in vitro are identical with microtubules (MTs). Depolymerization of MTs in the cytoplasmic exudates by MT-specific inhibitors stops particle movement, whereas depolymerization of actin filaments with cytochalasin D disrupts actin bundles but has little effect on particle motility. These data are consistent with the model of MT guided particle transport.  相似文献   

20.
Intracellular symbioses involving eukaryotic microalgae and a variety of heterotrophic protists and invertebrates are widespread, but are unknown in higher plants. Recently, we reported the isolation and molecular identification of a Coccomyxa-like green alga from in vitro cell cultures of Ginkgo biloba L. This alga resides intracellularly in an immature “precursor” form with a nonfunctional chloroplast, implying that algal photosynthetic activity has no role in this endosymbiosis. In necrotizing Ginkgo cells, precursors evolved into mature algae, proliferated, and were liberated into the culture medium after host cell bursting. In the present paper we demonstrate by molecular methods a worldwide distribution of the alga in planta. Endosymbiont-specific sequences of ribosomal DNA could be traced in Ginkgo tissues of each specimen examined from different geographic locations in Europe, North America, and Asia. The Ginkgo/Coccomyca association represents a new kind of intracellular, vertically inherited symbiosis. Storage bodies, probably of lipid nature, present in the cytoplasm of each partner suggest a possible involvement of the endosymbiont in metabolic pathways of its host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号