首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Turnera ulmifolia constitutes a well-studied polyploid complex with allo- and autopolyploid species ranging from 2 to 8x. Flow cytometry was used to determine nuclear DNA content, and to estimate 2C- and 1Cx-values with the aim of analysing the genome size in Turnera in terms of polyploid speciation. The 2C-value and 1Cx-value were evaluated in 12 species of the T. ulmifolia complex. Nuclear DNA content was estimated by flow cytometry of nuclei stained with propidium iodide. The 2C DNA content ranged from 1.38 to 1.83?pg in diploids, from 2.67 to 3.96?pg in tetraploids, from 2.73 to 4.31?pg in hexaploids, and from 3.53 to 5.90?pg in octoploids. The 1Cx-value ranged from 0.44 to 0.99?pg. The Turnera ulmifolia complex showed an increase in total DNA content in the ploidy level, but not in the expected proportion. The general tendency indicated a decrease in the 1Cx-value with increasing chromosome number, with T. grandidentata 4x being an outstanding exception. The 1Cx-values in the allooctoploids T. aurelii and T. cuneiformis differed by 1.6-fold from each other, probably as a result of different evolutionary histories following divergence from the last common ancestor.  相似文献   

2.
Cytogenetic characterization by karyotyping and determination of DNA content by flow cytometry of five species of Chrysolaena (Vernonieae, Asteraceae) was performed. This is the first study of nuclear DNA content realized in the genus. The 2C-values were compared with the ploidy level and the total karyotype length (TKL) of each species. Mitotic analysis revealed a base chromosome number x = 10 for all entities and different ploidy levels, from diploid (2n = 2x = 20) to octoploid (2n = 8x = 80). All species showed bimodal karyotypes composed of metacentric and submetacentric chromosomes. The average chromosome size (ML) varied from 1.86 μm to 2.70 μm, while the TKL ranged from 18.65 μm to 80.55 μm. The intrachromosomal asymmetry index (A1) varied from 0.27 to 0.38, while the interchromosomal asymmetry index (A2) ranged from 0.19 to 0.25. A new cytotype is reported for the first time for C. propinqua. Accessory chromosomes found in C. verbascifolia, C. cognata, C. flexuosa, and C. propinqua are also reported as new.  相似文献   

3.
There are relatively few studies of DNA content in the Vernonieae (Asteraceae) tribe. The first studies were realized in the Lessingianthus genus and determined the DNA content of 25 species. After DNA content, ploidy level and the total karyotype were compared in 6 Chrysolaena species. The aim of this study was to present, for the first time, the DNA content values of Vernonanthura and Vernonia and to thereby expand knowledge of the Vernonieae tribe. A total of 19 natural populations belonging to the genera Vernonanthura and Vernonia were studied for the first time. The results were compared with other Vernonieae genera and with other Asteraceae tribes. Our results found that Vernonieae have the smallest range of 1C value variation in Asteraceae. Furthermore, there were differences in the DNA content of Vernonia and Vernonanthura. These results show that low DNA content and herbaceous habit in Vernonia are characters derived from the higher DNA content and woody habit present in Vernonanthura. These results could indicate a hybrid origin of one species and allow the determination of both the ploidy and chromosome number of other taxa. The results observed in Vernonanthura species showed a highly significant correlation between 1C-value and latitude.  相似文献   

4.
The taxonomy of all species of Narcissus (Amaryllidaceae), an important horticultural crop, has not been investigated recently. As a new approach, genome size was determined by flow cytometry with propidium iodide from 375 accessions. The somatic nuclear DNA contents (2C) were shown to range from 14 to 38 pg for the diploids. Narcissus assoanus and N. gaditanus are, based on their nuclear DNA content, removed from section Apodanthi and placed in a new section Juncifolii. The different ploidy levels and species involved were entangled for N . “fernandesii” s.l. and a new allotetraploid form is named here. Section Pseudonarcissus was much more heterogeneous in nuclear DNA content than expected. Sixty-five accessions of N. pseudonarcissus possessed, with 23.7 pg, similar amounts of DNA. However, several species from this section were clearly distinctive in nuclear DNA content. It runs from the diploid N. primigenius with 21.7 pg to the also diploid N. nevadensis with 38.2 pg. Also N. abscissus and N. moleroi are with about 26 pg clearly different from N. pseudonarcissus. For the first time, in 11 accessions, hexaploidy was found in N. pseudonarcissus ssp. bicolor. A new section Nevadensis with 30–39 pg of nuclear DNA was split off from the section Pseudonarcissus with now 21–27 pg. A nonoploid N. dubius with 96.3 pg has by far the highest amount of nuclear DNA and can be calculated to have the highest ploidy ever reported in Narcisssus. The total number of Narcissus species was determined as 36, nine more than in Flora Europaea and they were divided up in two subgenera and 11 sections. Flow cytometry is shown to produce easily obtainable and original systematic data that lead to new insights. Genome size or C-value turns out to be one of the most salient features to define the status of the species in the genus Narcissus.  相似文献   

5.
The genus Dahlia (Asteraceae–Coreopsideae) is monophyletic according to a recent DNA phylogeny (ETS and ITS of rDNA). Traditionally, the genus has been divided into sections, but these have been shown not to be monophyletic. We have studied variation in genome size (DNA C-values) in a sample of species to investigate the possible effects of secondary metabolites on flow cytometry and Feulgen densitometry, and to see whether genome size variation has any systematic or phylogenetic significance. Using a range of cultivars, secondary compounds from corollas were shown to have only minor effects on the Feulgen method; the floral pigments were found to be relatively inert and seemed to have been extracted on fixation with acetic methanol. Freshly expanded corollas showed apparent apoptotic DNA decay in epidermal cells, so need to be used with caution. Flow cytometric measurements with propidium iodide in some cultivars resulted in a very similar average genome size (2C = 8.62 pg) as compared with Feulgen densitometry (2C = 8.84 pg). Leaf cytosol of D. variabilis has a demonstrable inhibitory effect on propidium iodide fluorescence, which may explain some of the intraspecific variation of C-values observed. DNA 2C-values ranged from 3.30 pg in D. dissecta (2n = 34) to 9.62 pg in a D. variabilis cultivar (2n = 64). The D. variabilis cultivars had broadly similar C-values showing a 1.16-fold range between cultivars. Some of this variation probably results from technical variables and the extent of genuine variation is uncertain. The highest 2Cx-value occurred in one D. coccinea accession (2.47 pg, 2n = 32; x = 8). D. coccinea with 2n = 64 showed slightly reduced Cx-values compared to D. coccinea with 2n = 32. Artificially produced interspecific hybrids had C-values that corresponded closely with expectations from the measured values obtained from their parents.  相似文献   

6.
Ranunculus parnassifolius is an orophilous plant distributed throughout Central and Southwestern Europe (Alps, Pyrenees and Cantabrian Mountains). Its evolutionary history and taxonomy are often complicated, having been little studied before now. The purpose of this article is to present flow cytometry measurements and multivariate morphometric analyses to ascertain cytotype distribution patterns and the morphological differentiation of R. parnassifolius s.l. from calcareous screes in the Northwest of Spain. DNA ploidy level and morphometric analysis were determined for plants of R. parnassifolius s.l. using flow cytometry (112 individuals) and multivariate analysis (152 individuals). Specimens were collected in eight localities in the Northwest of the Iberian Peninsula. Different sample preservation methods (fresh, frozen, and herbarium specimens) were employed as well as the use of various buffers and internal standards, in order to test the reproducibility of DNA flow cytometry. Three ploidy levels were detected in the study area (diploid, tetraploid, and pentaploid), and mixed-cytotype populations were also found. The mean nuclear DNA content of the R. parnassifolius group ranged from 7.43 ± 0.185 to 7.63 ± 0.339 pg/2C in diploids and from 15.09 ± 0.161 to 15.85 ± 0.587 pg/2C in tetraploids. The analysis of the monoploid genome sizes (1Cx) did not reveal a clear difference among cytotypes. These results suggest low intraspecific variation, at least among the populations studied. In addition, a comparison of different DNA reference standards was conducted. A new value for the chicken genome size was used as internal reference standard (2C = 3.14 ± 0.155 pg), with similar results found using both animal and plant standards (Pisum sativum and Solanum lycopersicum). Finally, herbarium vouchers and frozen tissue were proved to be suitable for DNA ploidy level measurements. This study provided a first assessment of C values in the R. parnassifolius group using flow cytometry. The weak morphological distinction of the cytotypes and the existence of mixed-cytotype populations in the Northwest of Spain are reported here for the first time. The different distribution pattern of the two cytotypes is discussed.  相似文献   

7.
In Myrtaceae, reports regarding the nuclear DNA content are scarce. The aim of this study is to present genome size data for fleshy-fruited Myrteae, and to test their relation with chromosome number and ploidy, the available data for cytoevolutionary studies in Myrtaceae. Thirty species out of ten genera were investigated for chromosome number and genome size using flow cytometry. Twenty-eight species were diploid with 2n = 2x = 22 and two species were tetraploid with 2n = 4x = 44. All genome sizes measured are new. Among the diploid species, a gradual and small variation in 2C-values (0.486 pg in Gomidesia schaueriana to 0.636 pg in Eugenia multicostata) was observed, whereas the tetraploid genomes of Psidium acutangulum and P. cattleianum had about twice as much DNA (1.053 and 1.167 pg, respectively). The total interspecific variation of C-values was 2.45-fold. The fleshy-fruited Myrteae have smaller holoploid genomes than the capsular-fruited Eucalypteae and Melaleuceae.  相似文献   

8.
Chromosome numbers are reported for 29 populations of 19 Vernonieae taxa collected mainly in the northeastern region of Brazil. Among them, data for five genera (Blanchetia, Rolandra, Pithecoseris, Stilpnopappus and Vanillosmopsis) are here reported for the first time, and the first chromosome counts are presented for 12 species. Chromosome numbers are quite diverse among and sometimes within genera, especially in the controversial and large subtribe Vernoniinae. The numbers varied from 2n = 18 to 2n = ~72. The main karyoevolutionary mechanism seems to be dysploidy, while polyploidy is probably associated with ancient hybridization processes generating most paleotetraploid genera. All studied species presented semi-reticulated interphase nuclei and proximal-early condensing behavior in prophase to prometaphase. In one species (Vernonia condensata with 2n = 40) fluorochrome staining with CMA/DAPI revealed five chromosome pairs bearing subterminal CMA+/DAPI? heterochromatin, probably NOR-associated, revealing the existence of low amounts of satellite DNA. The role of these features in the evolution of the tribe is discussed, revealing some interesting aspects for understanding of the Vernonieae karyoevolution, especially regarding neotropical members.  相似文献   

9.
Micromorphological characters of 113 species of the South American genus Lessingianthus H.Rob. (Vernonieae, Asteraceae) were analyzed to evaluate their reliability as taxonomic markers. The corolla pubescence was studied in detail for the first time in the genus. Glandular and non-glandular trichomes were studied and described. The trichome types allow differentiation among related species, but do not reflect the relationships among species groups. On the other hand, the basal stylar node only occurs in a distinctive group of species within the genus. The apical appendage of the anthers is non-glandular in all species of the genus. Several character states analyzed in Lessingianthus are often widespread in other related genera of Vernonieae. Therefore, Lessingianthus can be circumscribed only by a combination of micro- and macromorphological features.  相似文献   

10.
Smooth pufferfish of the family Tetraodontidae had become pure genomic models because of the remarkable compaction of their genome. This trait seems to be the result of DNA loss following its divergence from the sister family Diodontidae, which possess larger genomes. In this study, flow cytometry was used for estimate the genome size of four pufferfish species from the Neotropical region. Cytogenetic data and confocal microscopy were also used attempting to confirm relationships between DNA content and cytological parameters. The haploid genome size was 0.71?±?0.03 pg for Sphoeroides greeleyi, 0.34?±?0.01 pg for Sphoeroides spengleri, 0.82?±?0.03 pg for Sphoeroides testudineus (all Tetraodontidae), and 1.00?±?0.03 pg for Chilomycterus spinosus (Diodontidae). These differences are not related with ploidy level, because 46 chromosomes are considered basal for both families. The value for S. spengleri represents the smallest vertebrate genome reported to date. Since erythrocyte cell and nuclear sizes are strongly correlated with genome size, the variation in this last is considered under both adaptive and evolutionary perspectives.  相似文献   

11.
This study provides the first analysis of genome size diversity in Monogonont rotifers. Measurements were made using flow cytometry, with Drosophila melanogaster and chicken erythrocytes as internal standards. Nuclear DNA content (??2C????assuming diploid genomes) in eight different species of four different genera ranged almost fourfold, from 0.12 to 0.46 pg. A comparison with previously published values for Bdelloid rotifers suggested that the genomes of Monogononts are significantly smaller than those of Bdelloids. When compared to other Metazoans, Monogonont rotifers seem to have relatively small genomes. For instance, the C-values of the two species with the smallest genomes, Brachionus dimidiatus and Synchaeta pectinata, were only 0.06 and 0.085 pg, respectively. Various explanations for genome size diversity within Monogononta are discussed.  相似文献   

12.
Belonging to the genus Cenchrus with 16–22 species, Cenchrus ciliaris L. (syn. Pennisetum ciliare (L.) Link, buffelgrass) is a perennial, common in warmer regions of both hemispheres, growing as a C4 grass in a wide range of habitats. In the present study we determined chromosome number and nuclear DNA content (2C DNA) for 28 natural populations collected from northern to southern Tunisia. Three ploidy levels were found: one tetraploid population (2n?=?4x?=?36), three pentaploid (2n?=?5x?=?45), and 24 hexaploid populations (2n?=?6x?=?54). The hexaploid chromosome number has already been reported for Tunisian populations of C. ciliaris but tetraploid and pentaploid (2n?=?45) are new for this area. The tetraploid population was found in the semi-arid north; pentaploids were mostly on the northern side of the arid region, while the hexaploids were located mainly in the arid southern Tunisian and Saharan region. 2C DNA values, assessed using flow cytometry, correlated with chromosome counts. Nuclear DNA content ranged from 2C?=?3.03 to 4.61 pg, revealing three ploidy levels corresponding to 4x, 5x, 6x, and mean 2C DNA amounts were of 3.03, 3.7 and 4.48 pg, respectively. Each cytotype produced viable pollen. Flow cytometric seed screening neither proved nor disproved apomixis. The most frequent hexaploid populations seem best adapted to arid conditions in southern Tunisia. The monoploid value, 1Cx, was constant. The existence of pentaploid cytotype suggests hybridization ability between tetraploids and hexaploids. It appears that polyploidization is the major evolutionary mechanism in the speciation of C. ciliaris.  相似文献   

13.
It is generally accepted that polyploids have downsized basic genomes rather than additive values with respect to their related diploids. Changes in genome size have been reported in correlation with several biological characteristics. About 75 % of around 350 species recognized for Paspalum (Poaceae) are polyploid and most polyploids are apomictic. Multiploid species are common with most of them bearing sexual diploid and apomictic tetraploid or other ploidy levels. DNA content in the embryo and the endosperm was measured by flow cytometry in a seed-by-seed analysis of 47 species including 77 different entities. The relative DNA content of the embryo informed the genome size of the accession while the embryo:endosperm ratio of DNA content revealed its reproductive mode. The genome sizes (2C-value) varied from 0.5 to 6.5 pg and for 29 species were measured for the first time. Flow cytometry provided new information on the reproductive mode for 12 species and one botanical variety and supplied new data for 10 species concerning cytotypes reported for the first time. There was no significant difference between the mean basic genome sizes (1Cx-values) of 32 sexual and 45 apomictic entities. Seventeen entities were diploid and 60 were polyploids with different degrees. There were no clear patterns of changes in 1Cx-values due to polyploidy or reproductive systems, and the existing variations are in concordance with subgeneric taxonomical grouping.  相似文献   

14.
Dipsacaceae and Morinaceae have for a long time been regarded as separate but related families, whereas according to APG III they are included within the larger family Caprifoliaceae. Although genome size studies seldom provide conclusive characters for higher level systematics, they can yield useful information at a lower taxonomy level. In this study, we used DNA flow cytometry (supplemented by Feulgen densitometry) for measurement of genome size variation in the Dipsacaceae genera Cephalaria, Dipsacus, Knautia, Lomelosia, Pterocephalus, Scabiosa, Sixalix, Succisa, and Succisella, and Morina of the Morinaceae. At the monoploid level the Dipsacaceae genera (x = 7–10) vary 5.94-fold between 0.902 and 5.362 pg DNA (1Cx-value), whereas Morina longifolia (x = 17) has only 0.670 pg DNA. At the holoploid level 11.58-fold variation occurs between 0.902 and 10.446 pg DNA (1C-value). In Knautia sect. Trichera ploidy levels 2x, 4x, 6x are accompanied by corresponding increments of C-values, but genome downsizing is observed. In Knautia sect. Tricheroides the only investigated species K. integrifolia (2n = 20) has only 0.60-fold the mean genome size of sect. Trichera. Scabiosa canescens (2n = 2x = 16) has approximately double the C-value of all other Austrian Scabiosa species at the diploid level (pseudopolyploidy). These values raise concern against DNA-ploidy estimations at the interspecific level when chromosome numbers are unknown. The species sorted into two major clades of an existing phylogenetic tree of Dipsacaceae differ characteristically in their range of Cx-values. The KnautiaCephalariaDipsacusSuccisella clade has the great majority of its Cx-values larger than those of the ScabiosaPterocephalusLomelosia clade.  相似文献   

15.
This study investigated the pattern of variation in nuclear DNA content at different ploidy levels in Fragaria (Strawberry, Rosaceae) using flow cytometry based on mean fluorescent intensity (MFI) reflected by propidium-iodide-stained nuclei. On average, MFI values were 237 for diploids F. vesca, F. viridis, and F. nubicola, 416.5 for tetraploid F. orientalis, 621.5 for hexaploid F. moschata, and 798 for octoploids F. × ananassa, F. virginiana, and F. chiloensis. Within diploids MFI ranged from 225.9 in F. vesca ssp. vesca to 255.4 in F. nubicola, and within octoploids varied from 766 in F. × ananassa to 808 in F. virginiana. The nuclear DNA variation was significant among diploid species (N = 21, P < 0.008), but not across octoploid species (N = 17, P>0.386). MFI values were also variable among different genotypes of a given species though not significant. The values of mean basic genome DNA (MFI divided by ploidy level) were 118.5, 104, 103.5, and 99.8, respectively, for diploids, tetraploid, hexaploid, and octoploid species. This indicates that relative genomic size decreases by increasing ploidy level, and that there is no direct proportional relationship between DNA content and ploidy levels in Fragaria, supporting the idea of genome downsizing during polyploidization in plants.  相似文献   

16.
Erianthus arundinaceus is not only an important germplasm resource for sugarcane breeding but also a potential bioenergy plant. Making clear the distribution of the chromosome ploidy of wild E. arundinaceus in china is the premise of the research and utilization of this species. Therefore, the objectives of this study were to determine the ploidy level and DNA content of the 55 E. arundinaceus accessions using flow cytometry and to identify the correlation between ploidy and phenotypic traits. Among the 55 accessions, four tetraploids and 51 hexaploids were identified. The four tetraploids originated from Mengma Yunnan, Shuangjiang Yunnan, Gaozhou Guangdong and Chengle Sichuan. The mean DNA content was 4.82 pg/2C for the tetraploid and 7.30 pg/2C for the hexaploid plants. The ploidy was negatively correlated with cellulose content and positively correlated (P<0.05) with plant height, stem diameter, leaf width, dry weight per plant, fresh weight per plant and hemicellulose content. However, ploidy was not correlated with leaf length, tiller number and the ratio of dry weight and fresh weight. This study will be useful for revealing the distribution of the ploidy of wild E. arundinaceus in Chin, traits markers analysis, and utilization of this species, such as cultivar improvement and sugarcane breeding in the future.  相似文献   

17.

Aims

Habitats on ultramafic substrate present a hostile environment for plant development. We aimed to determine whether any particular range of genome size is favoured in such habitats.

Methods

Genome sizes of natural serpentinophyte populations were estimated using propidium iodide cytometry and compared with published data by phylogeny paired t-tests with plants from other substrata.

Results

The panel included 308 taxa belonging to 213 genera, with new values for 28 genera and 93 species. Using Leitch’s criteria, 56 % taxa belong to the group very small genomes (1C?≤?1.4 pg), 22 % to small (1.4–3.5 pg), 19 % to intermediary (3.5–14 pg), 3 % to large (14–35 pg) and 0.31 % to very large (1C?≥?35 pg). The majority of species were either indifferent for substrate (56 %) or facultative serpentinophytes (33 %). Most obligate serpentinophytes possessed very small genomes, and none exceeded 5 pg (1C). On average, plants growing on serpentine exhibited lower Cx-values than the same taxa growing on other soil types. About 4 % of species were annuals and 88 % perennials. Hemicryptophytes were dominant. Presence of at least two ploidy levels was recorded for 10 species.

Conclusions

Water stress, high temperatures and presence of heavy metals in serpentine habitats impose a high selective pressure and favour perennial species with very small genomes.  相似文献   

18.
With more than 160‐fold variation, Orchidaceae are currently the most diverse angiosperm family with respect to the amount of nuclear DNA. This study provides first genome size estimates for approximately 50% of species currently recognized in subfamily Apostasioideae, which is sister to the other four orchid subfamilies. The estimated 1C‐values range from 0.38 pg in Apostasia nuda to 5.96 pg in Neuwiedia zollingeri var. javanica, a nearly 16‐fold range. The two genera show non‐overlapping genome sizes, with those in Apostasia being distinctly smaller than those in Neuwiedia. In fact, most Apostasia spp. are at the lower end of the range of orchid C‐values. Observed discontinuities in DNA amounts in genera most probably reflect interspecific variation in ploidy. In addition to ploidy heterogeneity in N. zollingeri var. javanica, intraspecific variation in genome size (up to 17.7%) was also detected in some species; this can be plausibly related to the incidence of different geographical variants or unrecognized taxonomic heterogeneity. The AT content varied from 62.6 to 66.0%, which is in the upper range recorded for angiosperms. The genome size data obtained in this study fill a major phylogenetic gap in Orchidaceae and show that (very) small genomes prevail in subfamily Apostasioideae. © 2013 The Linnean Society of London  相似文献   

19.
Nuclear genome size, as measured by flow cytometry with propidium iodide, was used to investigate the relationships within the genus Tulipa L. (Liliaceae). More than 400 accessions representing 123 taxa from mainly wild-collected plants were investigated. Most species of Tulipa have the same basic chromosome number, 2n = 2x = 24. However, the somatic DNA 2C value (2C) is shown to range from 32 to 69 pg for the diploids. The largest genome contains roughly 3.4 × 1010 more base pairs than the smallest and has chromosomes that are more than twice as large. These large differences in the amount of nuclear DNA predict that the hybrids, if any arise, are usually sterile. Depending on the size of the total genome, 1 pg amounts to several thousand genes. Moreover, genome sizes are evaluated here in combination with available morphological, geographical, and molecular data. Therefore, the taxonomy proposed here is not a single-character taxonomy based on genome size alone. The genus Tulipa, as here determined, has 87 species, 29 more than accepted by van Raamsdonk et al. [Acta Hort (ISHS) 430:821–828, 1997], but including 25 species that were not available to them. Of these 87 species, 28 were not seen by Hall (The genus Tulipa, The Royal Horticultural Society, London, 1940) in a living state and placed by him in an addendum. Species of the subgenus Clusianae (Baker) Zonn. differ strongly in nuclear DNA content (DNA 2C value), 32 versus 40–68 pg for all other tulips, and are placed here in a separate subgenus. Also Orithyia, the only group with a style and with only 38–39 pg is placed in a separate subgenus. Therefore, all tulips are attributed to four subgenera, Clusianae (Baker) Zonn., Tulipa, Eriostemones Raamsd., and Orithyia (D. Don) Baker and divided further into 12 sections. Seven of the eight series of section Eichleres (A.D. Hall) Raamsd. are now placed in four sections: (1) section Lanatae (Raamsd.) Zonn., mainly confined to species from the Pamir-Alay and including series Lanatae Raamsd., (2) section Multiflorae (Raamsd.) Zonn. (including series Glabrae Raamsd.), (3) section Vinistriatae (Raamsd.) Zonn. (including series Undulatae Raamsd.), and (4) section Spiranthera Vved. ex Zonn. and Veldk. Triploids, tetraploids, and pentaploids were found in several species. DNA content confirmed the close relationships of the species within the different sections. The rather similar looking and therefore often confused T. armena Boiss. (51.8 pg), T. systola Stapf (56.3 pg), and T. julia K., Koch (61.6 pg) could be clearly distinguished. The same is true for T. biebersteiniana Schult. f. (56.9 pg), T. sylvestris ssp. australis (Link) Pamp. (62.0 pg), and T. primulina Baker (64.6 pg). T. doerfleri Gand. and T. whittalli (Dykes) Hall could be placed as polyploid forms of T. orphanidea Boiss. ex Heldr. On the basis of DNA content, a systematic association between T. julia K. Koch and the triploid T. aleppensis Boiss. and between T. systola Stapf and the triploid T. praecox Tenore was suggested. The new species T. lemmersii Zonn., Peterse, and de Groot is described, and four possible new species are indicated. Genome size as measured by using flow cytometry may conveniently be used to produce systematic data. It is applicable even in the case of dormant bulbs or sterile plants for monitoring the trade in bulbous species.  相似文献   

20.
2C DNA content values for 70 orchid species from 26 genera,including 37Dendrobiumspecies from eight taxonomic sections,were analysed using flow cytometry. The resulting nuclear DNAcontent values for species other thanDendrobiumranged from 1.91pg 2C-1to 15.19 pg 2C-1nuclei forCadetia tayloriandVanilla phaeantha,respectively.Dendrobiumnuclear DNA content values ranged from1.53 pg 2C-1to 4.23 pg 2C-1nuclei forD. cruentumandD. spectabile,respectively. DNA content measurements varied greatly withinDendrobiumsectionsLatouria and Spatulata. Nuclear DNA content values for the sixspecies analysed within Latouria ranged from 1.88 pg 2C-1nucleiforD. macrophyllumto 4.23 pg 2C-1nuclei forD. spectabile. NuclearDNA content values for the 16 species analysed within Spatulataranged from 1.69 pg 2C-1nuclei forD. discolorto 4.05 pg 2C-1nucleiforD. samoense. The least variation in DNA content was foundwithin the section Phalaenanthe, with nuclear DNA content valuesof 1.79 pg  2C-1, 1.86 pg 2C-1and 1.98 pg 2C-1forD. bigibbum,D.affineandD. phalaenopsis, respectively.Copyright 1998 Annalsof Botany Company Orchidaceae,Dendrobium, flow cytometry, propidium iodide, nuclear DNA, genome size, 2C values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号