首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neutrophils are considered to play a central role in ventilator-induced lung injury (VILI). However, the pulmonary consequences of neutrophil accumulation have not been fully elucidated. Matrix metalloproteinase-9 (MMP-9) had been postulated to participate in neutrophil transmigration. The purpose of this study was to investigate the role of MMP-9 in the neutrophilic inflammation of VILI. Male Sprague-Dawley rats were divided into three groups: 1) low tidal volume (LVT), 7 ml/kg of tidal volume (VT); 2) high tidal volume (HVT), 30 ml/kg of VT; and 3) HVT with MMP inhibitor (HVT+MMPI). As a MMPI, CMT-3 was administered daily from 3 days before mechanical ventilation. Degree of VILI was assessed by wet-to-dry weight ratio and acute lung injury (ALI) scores. Neutrophilic inflammation was determined from the neutrophil count in the lung tissue and myeloperoxidase (MPO) activity in the bronchoalveolar lavage fluid (BALF). MMP-9 expression and activity were examined by immunohistochemical staining and gelatinase zymography, respectively. The wet-to-dry weight ratio, ALI score, neutrophil infiltration, and MPO activity were increased significantly in the HVT group. However, in the HVT+MMPI group, pretreatment with MMPI decreased significantly the degree of VILI, as well as neutrophil infiltration and MPO activity. These changes correlated significantly with MMP-9 immunoreactivity and MMP-9 activity. Most outcomes were significantly worse in the HVT+MMPI group compared with the LVT group. In conclusion, VILI mediated by neutrophilic inflammation is closely related to MMP-9 expression and activity. The inhibition of MMP-9 protects against the development of VILI through the downregulation of neutrophil-mediated inflammation.  相似文献   

2.
Hyperoxia and infused granulocytes act synergistically in producing a nonhydrostatic high-permeability lung edema in the isolated perfused rabbit lung within 4 h, which is substantially greater than that seen with hyperoxia alone. We hypothesized that the interaction between hyperoxia and granulocytes was principally due to a direct effect of hyperoxia on the lung itself. Isolated perfused rabbit lungs that were preexposed to 2 h of hyperoxia (95% O2-5% CO2) prior to the infusion of unstimulated granulocytes (under normoxic conditions) developed significant nonhydrostatic lung edema (P = 0.008) within 2 h when compared with lungs that were preexposed to normoxia (15% O2-5% CO2) prior to granulocyte perfusion. The edema in the hyperoxic-preexposed lungs was accompanied by significant increases in bronchoalveolar lavage (BAL) protein, BAL granulocytes, BAL thromboxane and prostacyclin levels, perfusate chemotactic activity, and lung lipid peroxidation. These findings suggest that the synergistic interaction between hyperoxia and granulocytes in producing acute lung injury involves a primary effect of hyperoxia on the lung itself.  相似文献   

3.
Although mechanical ventilation (MV) is an important supportive strategy for patients with acute respiratory distress syndrome, MV itself can cause a type of acute lung damage termed ventilator-induced lung injury (VILI). Because nitric oxide (NO) has been reported to play roles in the pathogenesis of acute lung injury, the present study explores the effects on VILI of NO derived from chronically overexpressed endothelial nitric oxide synthase (eNOS). Anesthetized eNOS-transgenic (Tg) and wild-type (WT) C57BL/6 mice were ventilated at high or low tidal volume (Vt; 20 or 7 ml/kg, respectively) for 4 h. After MV, lung damage, including neutrophil infiltration, water leakage, and cytokine concentration in bronchoalveolar lavage fluid (BALF) and plasma, was evaluated. Some mice were given N(omega)-nitro-L-arginine methyl ester (L-NAME), a potent NOS inhibitor, via drinking water (1 mg/ml) for 1 wk before MV. Histological analysis revealed that high Vt ventilation caused severe VILI, whereas low Vt ventilation caused minimal VILI. Under high Vt conditions, neutrophil infiltration and lung water content were significantly attenuated in eNOS-Tg mice compared with WT animals. The concentrations of macrophage inflammatory protein-2 in BALF and plasma, as well as plasma tumor necrosis factor-alpha and monocyte chemoattractant protein-1, also were decreased in eNOS-Tg mice. L-NAME abrogated the beneficial effect of eNOS overexpression. In conclusion, chronic eNOS overexpression may protect the lung from VILI by inhibiting the production of inflammatory chemokines and cytokines that are associated with neutrophil infiltration into the air space.  相似文献   

4.
Excessive neutrophil infiltration to the lungs is a hallmark of acute lung injury (ALI). Milk fat globule epidermal growth factor-factor 8 (MFG-E8) was originally identified for phagocytosis of apoptotic cells. Subsequent studies revealed its diverse cellular functions. However, whether MFG-E8 can regulate neutrophil function to alleviate inflammation is unknown. We therefore aimed to reveal MFG-E8 roles in regulating lung neutrophil infiltration during ALI. To induce ALI, C57BL/6J wild-type (WT) and Mfge8(-/-) mice were intratracheally injected with LPS (5 mg/kg). Lung tissue damage was assessed by histology, and the neutrophils were counted by a hemacytometer. Apoptotic cells in lungs were determined by TUNEL, whereas caspase-3 and myeloperoxidase activities were assessed spectrophotometrically. CXCR2 and G protein-coupled receptor kinase 2 expressions in neutrophils were measured by flow cytometry. Following LPS challenge, Mfge8(-/-) mice exhibited extensive lung damage due to exaggerated infiltration of neutrophils and production of TNF-α, MIP-2, and myeloperoxidase. An increased number of apoptotic cells was trapped into the lungs of Mfge8(-/-) mice compared with WT mice, which may be due to insufficient phagocytosis of apoptotic cells or increased occurrence of apoptosis through the activation of caspase-3. In vitro studies using MIP-2-mediated chemotaxis revealed higher migration of neutrophils of Mfge8(-/-) mice than those of WT mice via increased surface exposures to CXCR2. Administration of recombinant murine MFG-E8 reduces neutrophil migration through upregulation of GRK2 and downregulation of surface CXCR2 expression. Conversely, these effects could be blocked by anti-α(v) integrin Abs. These studies clearly indicate the importance of MFG-E8 in ameliorating neutrophil infiltration and suggest MFG-E8 as a novel therapeutic potential for ALI.  相似文献   

5.
Phosphodiesterase 2A (PDE2A) is stimulated by cGMP to hydrolyze cAMP, a potent endothelial barrier-protective molecule. We previously found that lung PDE2A contributed to a mouse model of ventilator-induced lung injury (VILI). The purpose of the present study was to determine the contribution of PDE2A in a two-hit mouse model of 1-day intratracheal (IT) LPS followed by 4 h of 20 ml/kg tidal volume ventilation. Compared with IT water controls, LPS alone (3.75 μg/g body wt) increased lung PDE2A mRNA and protein expression by 6 h with a persistent increase in protein through day 4 before decreasing to control levels on days 6 and 10. Similar to the PDE2A time course, the peak in bronchoalveolar lavage (BAL) neutrophils, lactate dehydrogenase (LDH), and protein concentration also occurred on day 4 post-LPS. IT LPS (1 day) and VILI caused a threefold increase in lung PDE2A and inducible nitric oxide synthase (iNOS) and a 24-fold increase in BAL neutrophilia. Compared with a control adenovirus, PDE2A knockdown with an adenovirus expressing a short hairpin RNA administered IT 3 days before LPS/VILI effectively decreased lung PDE2A expression and significantly attenuated BAL neutrophilia, LDH, protein, and chemokine levels. PDE2A knockdown also reduced lung iNOS expression by 53%, increased lung cAMP by nearly twofold, and improved survival from 47 to 100%. We conclude that in a mouse model of LPS/VILI, a synergistic increase in lung PDE2A expression increased lung iNOS and alveolar inflammation and contributed significantly to the ensuing acute lung injury.  相似文献   

6.
Hyperoxia generates an oxidative stress in the mouse lung, which activates the major stress-inducible kinase pathways, including c-Jun NH2-terminal kinase (JNK). We examined the effect of Jnk1 gene deletion on in vivo responses to hyperoxia in mice. The survival of Jnk1-/- mice was reduced relative to wild-type mice after exposure to continuous hyperoxia. Jnk1-/- mice displayed higher protein concentration in bronchoalveolar lavage (BAL) fluid and increased expression of heme oxygenase-1, a stress-inducible gene, after 65 h of hyperoxia. Contrary to other markers of injury, the leukocyte count in BAL fluid of Jnk1-/- mice was markedly diminished relative to that of wild-type mice. The decrease in BAL leukocyte count was not associated with any decrease in lung myeloperoxidase activity at baseline or after hyperoxia treatment. Pretreatment with inhaled lipopolysaccharide increased BAL neutrophil content and extended hyperoxia survival time to a similar extent in Jnk1-/- and wild-type mice. Associated with increased mortality, Jnk1-/- mice had increased pulmonary epithelial cell apoptosis after exposure to hyperoxia compared with wild-type mice. These results indicate that JNK pathways participate in adaptive responses to hyperoxia in mice.  相似文献   

7.

Background

High tidal volume (VT) mechanical ventilation (MV) can induce the recruitment of neutrophils, release of inflammatory cytokines and free radicals, and disruption of alveolar epithelial and endothelial barriers. It is proposed to be the triggering factor that initiates ventilator-induced lung injury (VILI) and concomitant hyperoxia further aggravates the progression of VILI. The Src protein tyrosine kinase (PTK) family is one of the most critical families to intracellular signal transduction related to acute inflammatory responses. The anti-inflammatory abilities of induced pluripotent stem cells (iPSCs) have been shown to improve acute lung injuries (ALIs); however, the mechanisms regulating the interactions between MV, hyperoxia, and iPSCs have not been fully elucidated. In this study, we hypothesize that Src PTK plays a critical role in the regulation of oxidants and inflammation-induced VILI during hyperoxia. iPSC therapy can ameliorate acute hyperoxic VILI by suppressing the Src pathway.

Methods

Male C57BL/6 mice, either wild-type or Src-deficient, aged between 2 and 3 months were exposed to high VT (30 mL/kg) ventilation with or without hyperoxia for 1 to 4 h after the administration of Oct4/Sox2/Parp1 iPSCs at a dose of 5×107 cells/kg of mouse. Nonventilated mice were used for the control groups.

Results

High VT ventilation during hyperoxia further aggravated VILI, as demonstrated by the increases in microvascular permeability, neutrophil infiltration, macrophage inflammatory protein-2 (MIP-2) and plasminogen activator inhibitor-1 (PAI-1) production, Src activation, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, and malaldehyde (MDA) level. Administering iPSCs attenuated ALI induced by MV during hyperoxia, which benefited from the suppression of Src activation, oxidative stress, acute inflammation, and apoptosis, as indicated by the Src-deficient mice.

Conclusion

The data suggest that iPSC-based therapy is capable of partially suppressing acute inflammatory and oxidant responses that occur during hyperoxia-augmented VILI through the inhibition of Src-dependent signaling pathway.  相似文献   

8.
We postulated that the seleno-organic compound ebselen would attenuate neutrophil recruitment and activation after aerosolized challenge with endotoxin (LPS) through its effect as an antioxidant and inhibitor of gene activation. Rats were given ebselen (1-100 mg/kg i.p.) followed by aerosolized LPS exposure (0.3 mg/ml for 30 min). Airway inflammatory indices were measured 4 h postchallenge. Bronchoalveolar lavage (BAL) fluid cellularity and myeloperoxidase activity were used as a measure of neutrophil recruitment and activation. RT-PCR analysis was performed in lung tissue to assess gene expression of TNF-alpha, cytokine-induced neutrophil chemoattractant-1 (CINC-1), macrophage-inflammatory protein-2 (MIP-2), ICAM-1, IL-10, and inducible NO synthase. Protein levels in lung and BAL were also determined by ELISA. Ebselen pretreatment inhibited neutrophil influx and activation as assessed by BAL fluid cellularity and myeloperoxidase activity in cell-free BAL and BAL cell homogenates. This protective effect was accompanied by a significant reduction in lung and BAL fluid TNF-alpha and IL-1 beta protein and/or mRNA levels. Ebselen pretreatment also prevented lung ICAM-1 mRNA up-regulation in response to airway challenge with LPS. This was not a global effect of ebselen on LPS-induced gene expression, because the rise in lung and BAL CINC-1 and MIP-2 protein levels were unaffected as were lung mRNA expressions for CINC-1, MIP-2, IL-10, and inducible NO synthase. These data suggest that the anti-inflammatory properties of ebselen are achieved through an inhibition of lung ICAM-1 expression possibly through an inhibition of TNF-alpha and IL-1 beta, which are potent neutrophil recruiting mediators and effective inducers of ICAM-1 expression.  相似文献   

9.
The aim of the present study was to evaluate the anti-inflammatory activity of pre-elafin, an elastase-specific inhibitor, in lipopolysaccharide (LPS)-induced acute lung inflammation. C57BL/6 mice were pre-treated intranasally with recombinant human pre-elafin or vehicle only. One hour later, they were instilled intranasally with LPS (2 microg/mouse). Animals were sacrificed 6 hours after LPS instillation and bronchoalveolar lavage (BAL) was performed with three 1-ml aliquots of saline. LPS induced a lung inflammation characterised by a 100-fold increase in BAL neutrophils compared to control animals (265.8 +/- 54.5 x 10(3) and 2.4 +/- 1.3 x 10(3) neutrophils/ml, respectively). Pre-elafin dose-dependently reduced the neutrophil influx in the lung alveolar spaces by up to 84%. No elastase activity was detectable in all BAL fluids tested. Pre-elafin also reduced significantly LPS-induced gelatinase activity, as shown by zymography, and BAL macrophage inflammatory protein-2 (MIP-2) and KC levels, two potent neutrophil attractants and activators. Moreover, pre-elafin also significantly reduced mRNA levels of the three members of the IL-1 ligand family, namely IL-1alpha, IL-1beta and IL-1 receptor antagonist (IL-1Ra), type II IL-1 receptor, and TNFalpha as assessed in whole lung tissue by RNase protection assay. Thus, pre-elafin may be considered as a potent anti-inflammatory mediator.  相似文献   

10.
It has been hypothesized that the destruction of lung tissue observed in smokers with chronic obstructive pulmonary disease and emphysema is mediated by neutrophils recruited to the lungs by smoke exposure. This study investigated the role of the chemokine receptor CXCR2 in mediating neutrophilic inflammation in the lungs of mice acutely exposed to cigarette smoke. Exposure to dilute mainstream cigarette smoke for 1 h, twice per day for 3 days, induced acute inflammation in the lungs of C57BL/6 mice, with increased neutrophils and the neutrophil chemotactic CXC chemokines macrophage inflammatory protein (MIP)-2 and KC. Treatment with SCH-N, an orally active small molecule inhibitor of CXCR2, reduced the influx of neutrophils into the bronchoalveolar lavage (BAL) fluid. Histological changes were seen, with drug treatment reducing perivascular inflammation and the number of tissue neutrophils. beta-Glucuronidase activity was reduced in the BAL fluid of mice treated with SCH-N, indicating that the reduction in neutrophils was associated with a reduction in tissue damaging enzymes. Interestingly, whereas MIP-2 and KC were significantly elevated in the BAL fluid of smoke exposed mice, they were further elevated in mice exposed to smoke and treated with drug. The increase in MIP-2 and KC with drug treatment may be due to the decrease in lung neutrophils that either are not present to bind these chemokines or fail to provide a feedback signal to other cells producing these chemokines. Overall, these results demonstrate that inhibiting CXCR2 reduces neutrophilic inflammation and associated lung tissue damage due to acute cigarette smoke exposure.  相似文献   

11.
Ventilator-induced lung injury plays a crucial role in the outcome of patients with acute lung injury. Previous studies have shown a role for the cytokine tumor necrosis factor-alpha (TNF) in stretch-induced alveolar neutrophil recruitment, but the involvement of TNF in stretch-induced pulmonary edema is unclear. We investigated the effects of TNF through its individual p55 and p75 receptors on early pulmonary edema formation during high stretch ventilation, before neutrophil infiltration. Anesthetized wild-type or TNF receptor single/double knockout mice were ventilated with high tidal volume ( approximately 38 ml/kg) for 2 h or until they developed arterial hypotension. Pulmonary edema was assessed by physiological parameters including respiratory mechanics and blood gases, and by lavage fluid protein, lung wet:dry weight ratio, and lung permeability measurements using fluorescence-labeled albumin. High stretch ventilation in wild-type and TNF receptor double knockout animals induced similar pulmonary edema, and only 25-30% of mice completed the protocol. In contrast, the p55 receptor knockout mice were strongly protected from edema formation, with all animals completing the protocol. Myeloperoxidase assay indicated that this protective effect was not associated with decreased pulmonary neutrophil sequestration. The p75 receptor knockout mice, however, displayed increased susceptibility to edema formation, and no animals survived the full 2 h. These results demonstrate a novel role for TNF signaling (independent from its effects on neutrophil recruitment) specifically through the p55 receptor, in promoting high stretch-induced pulmonary edema, whereas p75 signaling may play an opposing role.  相似文献   

12.
The CXC chemokines cytokine-induced neutrophil chemoattractant (CINC) and macrophage inflammatory protein-2 (MIP-2) are potent neutrophil chemoattractants in rats. We have previously shown that CINC, unlike MIP-2 and most other proinflammatory cytokines, is elevated in the systemic circulation in response to an intratracheal (IT) challenge. Therefore, we hypothesized that CINC generated within the lung selectively enters the vascular compartment to facilitate pulmonary neutrophil recruitment. Rats were administered IT LPS, and plasma CINC and MIP-2 levels were measured 90 min and 4 h after injection, along with mRNA expression in lung, spleen, liver, and kidney. Ninety minutes and 4 h after IT LPS, CINC and MIP-2 mRNA expression were largely confined to lung homogenate, but of the two chemokines, only CINC was present in plasma. In separate experiments, rats received IT injections of recombinant CINC and/or MIP-2. Here, plasma levels of CINC, but not MIP-2, were significantly increased throughout the 4-h observation period. This finding was verified by individually administering (125)I-labeled forms of each chemokine. Instillation of recombinant MIP-2 or CINC into the lung increased the number of neutrophils recovered in bronchoalveolar lavage fluid at 4 h, and this effect was enhanced when both chemokines were administered together. In addition, intravenous (IV) CINC, but not IV MIP-2, increased pulmonary neutrophil recruitment in response to IT MIP-2. Our results show that CINC, in contrast to MIP-2, is selectively transported from the lung to the systemic circulation, where it promotes neutrophil migration into the lung in response to a chemotactic stimulus.  相似文献   

13.

Background

Proline-rich tyrosine kinase 2 (Pyk2) is essential in neutrophil degranulation and chemotaxis in vitro. However, its effect on the process of lung inflammation and edema formation during LPS induced acute lung injury (ALI) remains unknown. The goal of the present study was to determine the effect of inhibiting Pyk2 on LPS-induced acute lung inflammation and injury in vivo.

Methods

C57BL6 mice were given either 10 mg/kg LPS or saline intratracheally. Inhibition of Pyk2 was effected by intraperitoneal administration TAT-Pyk2-CT 1 h before challenge. Bronchoalveolar lavage analysis of cell counts, lung histology and protein concentration in BAL were analyzed at 18 h after LPS treatment. KC and MIP-2 concentrations in BAL were measured by a mouse cytokine multiplex kit. The static lung compliance was determined by pressure-volume curve using a computer-controlled small animal ventilator. The extravasated Evans blue concentration in lung homogenate was determined spectrophotometrically.

Results

Intratracheal instillation of LPS induced significant neutrophil infiltration into the lung interstitium and alveolar space, which was attenuated by pre-treatment with TAT-Pyk2-CT. TAT-Pyk2-CT pretreatment also attenuated 1) myeloperoxidase content in lung tissues, 2) vascular leakage as measured by Evans blue dye extravasation in the lungs and the increase in protein concentration in bronchoalveolar lavage, and 3) the decrease in lung compliance. In each paradigm, treatment with control protein TAT-GFP had no blocking effect. By contrast, production of neutrophil chemokines MIP-2 and keratinocyte-derived chemokine in the bronchoalveolar lavage was not reduced by TAT-Pyk2-CT. Western blot analysis confirmed that tyrosine phosphorylation of Pyk2 in LPS-challenged lungs was reduced to control levels by TAT-Pyk2-CT pretreatment.

Conclusions

These results suggest that Pyk2 plays an important role in the development of acute lung injury in mice and that pharmacological inhibition of Pyk2 might provide a potential therapeutic strategy in the pretreatment for patients at imminent risk of developing acute lung injury.  相似文献   

14.
目的 探讨衣原体肺炎中白细胞介素-17(interleukin -17,IL-17)对中性粒细胞(polymorphonuclear leucocyte,PMN)循环的调节作用及机制.方法 用40 μl含1×10^3包涵体形成单位(inclusion-forming units,IFU)的衣原体鼠肺炎株(Chlamydia muridarum,Cm)呼吸道感染BALB/c小鼠,诱导鼠衣原体肺炎.用抗鼠IL-17单克隆抗体吸入中和内源性IL-17,以相应独特型抗体(IgG2α)作为对照.用RT-PCR检测小鼠肺组织及肺上皮细胞系巨噬细胞炎性蛋白-2 (macrophage inflammatory protein-2,MIP-2)和IL-6 mRNA的表达.取小鼠支气管肺泡灌洗液细胞染色计数PMN,感染肺组织进行病理染色.结果 衣原体肺炎中,内源性IL-17中和小鼠肺组织PMN浸润显著降低,支气管肺泡灌洗液PMN数量显著低于对照组.IL-17与TNF-α协同可上调肺上皮细胞MIP-2和IL-6 mRNA表达,且内源性IL-17中和小鼠肺组织MIP-2和IL-6表达显著降低.结论 衣原体肺炎中IL-17通过促进肺组织细胞分泌趋化性细胞因子MIP-2和前症性细胞因子IL-6,诱导PMN循环,参与宿主抗衣原体炎性应答.  相似文献   

15.
Phosgene inhalation causes a severe noncardiogenic pulmonary edema characterized by an influx of neutrophils into the lung. To study the role of neutrophils in lung injury and mortality after phosgene, we investigated the effects of leukocyte depletion with cyclophosphamide, inhibiting the generation of the chemotaxin leukotriene B4 with the 5-lipoxygenase inhibitor AA861 and impairing neutrophil migration with the microtubular poison colchicine. Cyclophosphamide, AA861, and colchicine injected before exposure significantly reduced percent neutrophils, protein, and thiobarbituric acid-reactive products in bronchoalveolar lavage fluid of rats exposed to phosgene (0.5 ppm X 60 min). Cyclophosphamide, AA861, and colchicine also significantly decreased mortality from phosgene (2.0 ppm X 90 min) in mice. Colchicine significantly reduced neutrophil influx, lung injury, and mortality even when given 30 min after phosgene exposure. We conclude that lung injury and mortality after phosgene exposure are associated with an influx of neutrophils into the lung. Prevention of neutrophil migration with colchicine may hold therapeutic potential in phosgene poisoning.  相似文献   

16.
Exposure of the newborn lung to hyperoxia is associated with impaired alveolar development. In newborn rats exposed to hyperoxia and studied at day 14 of life, retinoic acid (RA) treatment improved survival and increased lung collagen but did not improve alveolar development. To determine whether RA treatment during exposure to hyperoxia results in late improvement in alveolarization, we treated newborn rats with RA and hyperoxia from day 3 to day 14 and then weaned O2 to room air by day 20, and studied the animals on day 42. O2-exposed animals had larger mean lung volumes, larger alveoli, and decreased gas-exchange tissue relative to air-exposed animals, whereas RA-treated O2-exposed animals were not statistically different from air-exposed controls. Relative to control animals, elastin staining at day 14 was decreased in hyperoxia-exposed lung independent of RA treatment, and, at day 42, elastin staining was similar in all treatment groups. At day 14, elastin gene expression was similar in all treatment groups, whereas at day 42 lung previously exposed to hyperoxia showed increased elastin signal independent of RA treatment. These results indicate that RA treatment during hyperoxia exposure promotes septal formation without evidence of effects on elastin gene expression after 4 wk of recovery.  相似文献   

17.
We examined the effects of prolonged hyperoxia (75% O(2)) on lung structure and collagen metabolism in the subacute phase of lung injury induced by continuous infusion of endotoxin (LPS) in a rat model. Experimental groups included control, endotoxin alone, endotoxin plus hyperoxia, and hyperoxia alone. Endotoxin-treated rats received a bolus of LPS (10 mg/kg i.v.) followed by 500 microg.kg(-1).day(-1) in continuous infusion for 10 days. The bronchoalveolar lavage (BAL) fluid/plasma albumin concentration ratio, an index of capillary permeability, and neutrophil and macrophage counts in BAL fluid were highest in the endotoxin plus hyperoxia group. On pathological examination, prolonged hyperoxia exacerbated destruction of the alveolar wall and caused most prominent emphysematous changes in the endotoxin plus hyperoxia group. Lung tissue hydroxyproline concentration was significantly decreased in the hyperoxia group and increased in the endotoxin group. The latent forms of MMP-2 and MMP-9 increased in BAL fluid of the endotoxin- and/or hyperoxia-treated groups, whereas the activities of collagenase and gelatinase, and the active form of MMP-2 were all increased in the hyperoxia-treated groups. Added to endotoxin, prolonged hyperoxia degraded collagen, the major structural component of basement membranes, and caused emphysematous changes associated with activation of collagenase and MMP-2. Our observations suggest that, in the subacute phase of endotoxin-induced lung injury, prolonged hyperoxia causes pulmonary emphysematous changes with persistent injury to the alveolar capillary barrier. Collagenase and MMP-2 activated by hyperoxia, together with MMP-9, may play prominent roles in disruption of the alveolar basement membranes and degradation of collagen lining the alveolar walls.  相似文献   

18.
《Phytomedicine》2014,21(12):1708-1716
PurposeAntrodia camphorata (AC), a highly valued polypore mushroom native only to Taiwan, has been traditionally used as a medicine for the treatment of food and drug intoxication, diarrhea, abdominal pain, hypertension, skin itching, and cancer. In this study, both of solid-state-cultured AC (S-AC) and wood-cultured AC (W-AC) were evaluated the anti-inflammatory effects on hyperoxia-induced lung injury in NF-κB-luciferase+/+ transgenic mice.MethodsThe homozygous transgenic mice (NF-κB-luciferase+/+) were randomly assigned to four groups for treatment (n = 6) including Normoxia/DMSO group, Hyperoxia/DMSO group, Hyperoxia/S-AC group, and Hyperoxia/W-AC group. After 72 h of hyperoxia, we examined the bioluminescence images, reactive oxygen species (ROS), the mRNA and protein expression levels of inflammation factors, and histopathological analyses of the lung tissues.ResultsHyperoxia-induced lung injury significantly increased the generation of ROS, the mRNA levels of IL-6, TNF-α, IL-1β and IL-8, and the protein expression levels of IKKα/β, iNOS and IL-6. Pulmonary edema and alveolar infiltration of neutrophils was also observed in the hyperoxia-induced lung tissue. However, treatment with either S-AC or W-AC obviously decreased hyperoxia-induced generation of ROS and the expression of IL-6, TNF-α, IL-1β, IL-8, IKKα/β and iNOS compared to hyperoxia treatment alone. Lung histopathology also showed that treatment with either S-AC or W-AC significantly reduced neutrophil infiltration and lung edema compared to treatment with hyperoxia treated alone. To find out their major compounds, eburicoic acid and dehydroeburicoic acid were both isolated and identified from S-AC and W-AC by using HPLC, MS, and NMR spectrometry.ConclusionsThese results demonstrated that methanolic extracts both of S-AC and W-AC have excellent anti-inflammatory activities and thus have great potential as a source for natural health products.  相似文献   

19.
Streptococcus pyogenes of the M1 serotype can cause streptococcal toxic shock syndrome and acute lung injury. Statins exert beneficial effects in septic patients although the mechanisms remain elusive. This study examined effects of simvastatin on M1 protein-provoked pulmonary inflammation and tissue injury. Male C57BL/6 mice were pretreated with simvastatin or a CXCR2 antagonist before M1 protein challenge. Bronchoalveolar fluid and lung tissue were harvested for determination of neutrophil infiltration, formation of edema, and CXC chemokines. Flow cytometry was used to determine Mac-1 expression on neutrophils. Gene expression of CXC chemokines was determined in alveolar macrophages by using quantitative RT-PCR. M1 protein challenge caused massive infiltration of neutrophils, edema formation, and production of CXC chemokines in the lung as well as upregulation of Mac-1 on circulating neutrophils. Simvastatin reduced M1 protein-induced infiltration of neutrophils and edema in the lung. In addition, M1 protein-induced Mac-1 expression on neutrophils was abolished by simvastatin. Furthermore, simvastatin markedly decreased pulmonary formation of CXC chemokines and gene expression of CXC chemokines in alveolar macrophages. Moreover, the CXCR2 antagonist reduced M1 protein-induced neutrophil expression of Mac-1 and accumulation of neutrophils as well as edema formation in the lung. These novel findings indicate that simvastatin is a powerful inhibitor of neutrophil infiltration in acute lung damage triggered by streptococcal M1 protein. The inhibitory effect of simvastatin on M1 protein-induced neutrophil recruitment appears related to reduced pulmonary generation of CXC chemokines. Thus, simvastatin may be a useful tool to ameliorate acute lung injury in streptococcal infections.  相似文献   

20.
The role of neutrophils in acute oxidative lung injury in preterm babies is presently unclear, with some investigators maintaining they contribute to tissue injury while others believe they do not. The aim of the present study was to determine whether neutropenia, induced by a specific neutrophil antibody, influenced the time course or extent of oxygen-induced injury of the immature lung. Preterm guinea pigs, delivered by caesarean section at 65 days' gestation (term=68 days), were injected intraperitoneally with either control serum (CS) or neutrophil antiserum (NAS; 200 μl/100 g body weight) once daily for 5 days. Pups were exposed to 95% oxygen for the first 72 h, and then allowed to recover in 21% oxygen for the subsequent 48 h. Groups of treated animals were also maintained in 21% oxygen for 5 days. Lungs were examined by bronchoalveolar lavage (BAL) at 72 h or 120 h. In CS-treated pups, exposure to 95% oxygen increased both the number of circulating neutrophils and those recovered by BAL at both 72 h and 120 h. Protein concentration in BAL fluid, an index of lung microvascular permeability, and BAL elastase and β-glucuronidase activities, indices of neutrophil activation, were significantly increased in pups exposed to 95% oxygen. Pups exposed to 95% oxygen and treated with NAS showed a decrease in numbers of circulating neutrophils (72 h, 9.53 vs 0.66 x 105/ml, P<0.0005; 120 h, 4.9 vs 0.08 x 105/ml, P<0.0005) and BAL fluid neutrophils (72 h, 3.1 vs 0.7 x 105/ml, P<0.05; 120 h, 12.4 vs 3.8 x 105/ml, P<0.05). BAL protein concentration, neutrophil elastase and β-glucuronidase activities in hyperoxia-exposed pups were similar following treatment with either CS or NAS. Although the number of circulating neutrophils were markedly depleted and expansion of the alveolar neutrophil pool was restricted in NAS-treated pups, the neutrophils recruited to the lung were activated and could have contributed to the increase in microvascular permeability in hyperoxia-exposed pups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号