首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thyroglobulin (Tg), the thyroid hormoneprecursor, is synthesized by thyrocytes and secreted into the colloid.Hormone release requires uptake of Tg by thyrocytes and degradation inlysosomes. This process must be precisely regulated. Tg uptake occursmainly by micropinocytosis, which can result from both fluid-phasepinocytosis and receptor-mediated endocytosis. Because Tg is highlyconcentrated in the colloid, fluid-phase pinocytosis or low-affinityreceptors should provide sufficient Tg uptake for hormone release;high-affinity receptors may serve to target Tg away from lysosomes,through recycling into the colloid or by transcytosis into thebloodstream. Several apical receptors have been suggested toplay roles in Tg uptake and intracellular trafficking. A thyroidasialoglycoprotein receptor may internalize and recycle immature formsof Tg back to the colloid, a function also attributed to an as yetunidentified N-acetylglucosamine receptor. Megalin mediatesTg uptake by thyrocytes, especially under intense thyroid-stimulatinghormone stimulation, resulting in transcytosis of Tg from the colloidto the bloodstream, a function that prevents excessive hormone release.

  相似文献   

2.
We recently reported that megalin (gp330), an endocytic receptor found on the apical surface of thyroid cells, binds thyroglobulin (Tg) with high affinity in solid phase assays. Megalin-bound Tg was releasable by heparin. Here we show that Fisher rat thyroid (FRTL-5) cells, a differentiated rat thyroid cell line, can bind and endocytose Tg via megalin. We first demonstrated that FRTL-5 cells express megalin in a thyroid-stimulating hormone-dependent manner. Evidence of Tg binding to megalin on FRTL-5 cells and on an immortalized rat renal proximal tubule cell line (IRPT cells), was obtained by incubating the cells with 125I-Tg, followed by chemical cross-linking and immunoprecipitation of 125I-Tg with antibodies against megalin. To investigate cell binding further, we developed an assay in which cells were incubated with unlabeled Tg at 4 degrees C, followed by incubation with heparin, which released almost all of the cell-bound Tg into the medium. In solid phase experiments designed to illuminate the mechanism of heparin release, we demonstrated that Tg is a heparin-binding protein, as are several megalin ligands. The amount of Tg released by heparin from FRTL-5 and IRPT cells, measured by enzyme-linked immunosorbent assay (ELISA), was markedly reduced by two megalin competitors, receptor-associated protein (RAP) and 1H2 (monoclonal antibody against megalin), indicating that much of the Tg released by heparin had been bound to megalin ( approximately 60-80%). The amount inhibited by RAP was considered to represent specific binding to megalin, which was saturable and of high affinity (Kd approximately 11.2 nM). Tg endocytosis by FRTL-5 and IRPT cells was demonstrated in experiments in which cells were incubated with unlabeled Tg at 37 degrees C, followed by heparin to remove cell-bound Tg. The amount of Tg internalized (measured by ELISA in the cell lysates) was reduced by RAP and 1H2, indicating that Tg endocytosis is partially mediated by megalin.  相似文献   

3.
Megalin (gp 330) is a large cell surface receptor expressed on the apical surfaces of epithelial tissues, that mediates the binding and internalization of a number of structurally and functionally distinct ligands. In this paper we report the first detailed structural characterization of megalin-derived oligosaccharides. Using strategies based on mass spectrometric analysis, we have defined the structures of the N-glycans of megalin. The results reveal that megalin glycoprotein is heterogeneously glycosylated. The major N-glycans identified belong to the following two classes: high mannose structures and complex type structures, with complex structures being more abundant than high mannose structures. The major nonreducing epitopes in the complex-type glycans are: GlcNAc, Galbeta1-4GlcNAc (LacNAc), NeuAcalpha2-6Galbeta1-4GlcNAc (sialylated LacNAc), GalNAcbeta1-4[NeuAcalpha2-3]Galbeta1-4GlcNAc (Sd(a)) and Galalpha1-3Galbeta1-4GlcNAc. Most complex structures are characterized by the presence of (alpha1,6)-core fucosylation and the presence of a bisecting GlcNAc residue.  相似文献   

4.
Thyroid hormone synthesis is under the control of thyrotropin (TSH), which also regulates the sulfation of tyrosines in thyroglobulin (Tg). We hypothesized that sulfated tyrosine (Tyr[S]) might be involved in the hormonogenic process, since the consensus sequence required for tyrosine sulfation to occur was observed at the hormonogenic sites. Porcine thyrocytes, cultured with TSH but without iodide in the presence of [(35)S]sulfate, secreted Tg which was subjected to in vitro hormonosynthesis with increasing concentrations of iodide. A 63% consumption of Tyr[S] (1 residue) was observed at 40 atoms of iodine incorporated into Tg, corresponding to a 40% hormonosynthesis efficiency. In addition, hyposulfated Tg secreted by cells incubated with sodium chlorate was subjected to in vitro hormonosynthesis. With 0.5 Tyr[S] residue (31% of the initial content), the efficiency of the hormonosynthesis was 29%. In comparison, when hormonosynthesis was performed by cells, with only 0.25 Tyr[S] residue (16% of the initial content), the hormonosynthesis efficiency fell to 18%. These results show that there exists a close correlation between the sulfated tyrosine content of Tg and the production of thyroid hormones.  相似文献   

5.

Background

Thyroid hormone signaling is critical for development, growth and metabolic control in vertebrates. Although serum concentration of thyroid hormone is remarkable stable, deiodinases modulate thyroid hormone signaling on a time- and cell-specific fashion by controlling the activation and inactivation of thyroid hormone.

Scope of the review

This review covers the recent advances in D2 biology, a member of the iodothyronine deiodinase family, thioredoxin fold‐containing selenoenzymes that modify thyroid hormone signaling in a time- and cell-specific manner.

Major conclusions

D2-catalyzed T3 production increases thyroid hormone signaling whereas blocking D2 activity or disruption of the Dio2 gene leads to a state of localized hypothyroidism. D2 expression is regulated by different developmental, metabolic or environmental cues such as the hedgehog pathway, the adrenergic- and the TGR5-activated cAMP pathway, by xenobiotic molecules such as flavonols and by stress in the endoplasmic reticulum, which specifically reduces de novo synthesis of D2 via an eIF2a-mediated mechanism. Thus, D2 plays a central role in important physiological processes such as determining T3 content in developing tissues and in the adult brain, and promoting adaptive thermogenesis in brown adipose tissue. Notably, D2 is critical in the T4-mediated negative feed-back at the pituitary and hypothalamic levels, whereby T4 inhibits TSH and TRH expression, respectively. Notably, ubiquitination is a major step in the control of D2 activity, whereby T4 binding to and/or T4 catalysis triggers D2 inactivation by ubiquitination that is mediated by the E3 ubiquitin ligases WSB-1 and/or TEB4. Ubiquitinated D2 can be either targeted to proteasomal degradation or reactivated by deubiquitination, a process that is mediated by the deubiquitinases USP20/33 and is important in adaptive thermogenesis.

General significance

Here we review the recent advances in the understanding of D2 biology focusing on the mechanisms that regulate its expression and their biological significance in metabolically relevant tissues. This article is part of a Special Issue entitled Thyroid hormone signalling.  相似文献   

6.
The polar planar compound hexamethylene bisacetamide (HMBA) is an inducer of terminal differentiation which has been extensively studied in the murine erythroleukemia cells (MELC). We have tested this compound in normal porcine thyroid cells in primary culture where it either activates or inhibits the major tissue specific functions of these cells: it induces the reorganization of cells into follicles, prevents the loss of thyrotropin sensitivity in monolayer cells, activates cell growth but inhibits their iodide metabolism. In this paper, we demonstrate that HMBA acts on the total thyroglobulin levels measured in cell layers plus media. This specific marker of thyroid tissue is increased by HMBA both in kinetics and in concentration-response experiments. HMBA per se does not increase the total cyclic AMP measured either during the first hours after stimulation or in the following days when compared to controls. As expected, cyclic AMP in the same experiment increased rapidly within minutes after the cells were challenged by TSH (positive control). Altogether, the results show that the drug HMBA mimics thyrotropin effects on thyroglobulin levels measured in porcine thyroid cells in culture. This modulation cannot be explained by an increase in cyclic AMP, indicating that despite similarities between TSH and HMBA effects, the mechanism of the mode of action of these two molecules is very different.  相似文献   

7.
To examine the influence of thyrotropin (TSH) on the thyroglobulin (Tgb) mRNA content, the latter was evaluated in the cytoplasm of hog thyroid cells cultured in the absence (control cells) or presence of TSH. The Tgb mRNA levels were determined by, (i) kinetics of hybridization to sheep Tgb cDNA, (ii) capacity of coding for peptides immunologically related to Tgb in reticulocyte lysate. In cells cultured for 4 days in the absence of TSH, the content of Tgb mRNA sequences decreased to 30% of its initial value and the messenger activity to 15%. Conversely, TSH maintained the initial Tgb mRNA level in cells cultured in its presence, and TSH concentrations 50 micronU/ml or 5 mU/ml gave identical results. At each period tested poly (A) content was the same in TSH-treated and control cells. When TSH was added to media after 4 or 8 days culture without TSH, the Tgb mRNA level was partially restored. These results suggest that TSH exerts a positive control on Tgb gene expression through modulation of Tgb mRNA content of thyroid cells.  相似文献   

8.
A polypeptide of 224 amino acids from the C terminus of rat thyroglobulin fused to Staphylococcal protein A (TgC 224), containing 3 tyrosines which have been shown to be hormonogenic in vivo (Tyr-2555, -2569 and -2748), forms thyroid hormones with relatively high efficiency upon in vitro enzymatic iodination using, most likely, the hormonogenic Tyr-2555 and Tyr-2569. Acetylcholinesterase, which has sequence and structural homology with the C terminus of the thyroglobulin molecule and bovine serum albumin, used as control proteins, formed thyroid hormones with lower efficiency. These results validate our experimental approach to define the structural requirements for thyroid hormone formation using thyroglobulin fragments.  相似文献   

9.
Specific binding sites for atrial natriuretic peptide (ANP) were identified and characterized in primary cultures of human thyroid cells. Saturation analysis using [125I] alpha rat ANP as the ligand showed a single class of high affinity binding (Kd = 0.2 nM) which was inhibited by atriopeptin I and the alpha -human form of ANP, but not by a C-terminal fragment of the peptide. The number of ANP binding sites in these cultures was not altered by the thyroid hormone concentration of the medium. In a dose-response experiment, thyro-globulin secretion was significantly reduced in the presence of 0.01 nM ANP and was maximally reduced (to 25% of control value) with 10 nM ANP. Cyclic GMP production was increased threefold in the presence of 100 nM ANP, but was unchanged with lower doses (0.01 and 0.1 nM) of the peptide. The finding of receptors in thyroid follicular cells suggests a hitherto unrecognized role of ANP in the thyroid gland.  相似文献   

10.
Transformed rat thyroid cells fail to express thyroglobulin. Cells transformed with a Kirsten murine sarcoma virus carrying a temperature-sensitive ras allele lose their transformation phenotype when shifted to the nonpermissive (39 degrees C) temperature. The thyroglobulin promoter, however, remains inactive. Similarly, transfection of these cells with a thyroglobulin promoter fused to a neomycin resistance reporter gene does not produce clones resistant to G418. Treatment of the transfected cells with the DNA demethylating agent 5-azacytidine reactivates the thyroglobulin promoter and yields stable G418-resistant clones. We show that thyroglobulin promoter activity is correlated with the presence of a thyroid-specific nuclear factor, TgTF1. TgTF1 cannot be detected in transformed cells but reappears after treatment with 5-azacytidine at 39 degrees C. Restoration of Ras activity at 33 degrees C leads to the rapid loss of TgTF1 and G418 resistance.  相似文献   

11.
Thyroglobulin (TG) is secreted by the thyrocytes into the follicular lumen of the thyroid. After maturation and hormone formation, TG is endocytosed and delivered to lysosomes. Quality control mechanisms may occur during this bidirectional traffic since 1) several molecular chaperones are cosecreted with TG in vivo, and 2) lysosomal targeting of immature TG is thought to be prevented via the interaction, in acidic conditions, between the Ser(789)-Met(1172) TG hormonogenic domain (BD) and an unidentified membrane receptor. We investigated the secretion and cell surface expression of PDI and other chaperones in the FRTL5 thyroid cell line, and then studied the characteristics of the interaction between TG and PDI. We demonstrated that PDI, but also other chaperones such as calnexin and KDEL-containing proteins are exposed at the cell surface. We observed on living cells or membrane preparations that PDI specifically binds TG in acidic conditions, and that only BD is involved in binding. Surface plasmon resonance analysis of TG/PDI interactions indicated: 1) that PDI bound TG but only in acidic conditions, and that it preferentially recognized immature molecules, and 2) BD is involved in binding even if cysteine-rich modules are deleted. The notion that PDI acts as an "escort" for immature TG in acidic post-endoplasmic reticulum compartments is discussed.  相似文献   

12.
13.
C M Moriarty 《Life sciences》1978,23(3):185-194
It is now accepted by most investigators that the initial action of most peptide hormones involves an interaction with a specific receptor on (or in) the plasma membrane of the target cell. A cascade of intracellular events results and culminates in the physiological response characteristic of the interaction of the particular hormone with its target cell. The regulation of hormone release from the adenohypophysis by the hypothalamic releasing hormones is presumed to occur via a similar process. The nature of the interaction at the cell surface as well as the details and sequence of the subsequent intracellular events are largely unknown. We do know, however, that two of the key factors regulating the intracellular secretory machinery in most cells are 1) the adenylate cyclase — cyclic AMP — protein kinase system and 2) the divalent cation, calcium. Since there have been several recent reviews (1–3) which have covered the role of the cyclic nucleotides in pituitary hormone secretion, this discussion will be restricted to a consideration of the regulatory role played by calcium.As was the case with tissues, the early work regarding calcium and the adenohypophysis followed the pattern of determining the ability of secretagogues to release pituitary hormones subsequent to various manipulations designed to remove what was often implicity considered to be extracellular calcium.  相似文献   

14.
15.
New data concerning molecular structure, localization and functions of iodothyronine deiodinases in animal and human organisms are reviewed in the article. Mechanisms of 5- and 5'-deiodination of thyroid hormones by intracellular iodothyronine deiodinases are considered, the role of these enzymes in the processes of biologically active iodothyronine formation and thyroid hormone inactivation are shown. The data which suggest functioning iodothyronine-5'-deiodinases in the cells of haemopoietic and lymphopoietic systems, and connection between the rate of enzyme expression and cell differentiation level are adduced. Participation of thyroid hormones and other factors in the regulation of expression and functional activities of iodothyronine-5'-deiodinases in the cells is discussed. The important role of iodothyronine deiodinases in mechanisms of optimization of intracellular thyroid status in altered physiological state of organism, during ontogenesis and in pathological conditions is considered.  相似文献   

16.
Usually, human thyrocytes in primary culture rapidly lose their thyroid function and fail to synthesize or release thyroid hormone after 3-5 days of culture. By culturing thyroid follicles obtained from patients with Graves' disease in medium supplemented with TSH and a low concentration of fetal calf serum (1%), thyrocytes can maintain thyroid function for several days. We have found that the addition of dimethylsulfoxide to culture medium (1.7%) furthermore enhanced and maintained thyroid function (de novo synthesis and release of [125I] thyroxine) for more than 13 days, probably by inhibiting dedifferentiation of thyrocytes. The present bioassay will be also useful for detecting thyroid stimulating immunoglobulin in patients with Graves' disease.  相似文献   

17.
The timing of oligodendrocyte differentiation is thought to depend on both intracellular mechanisms and extracellular signals. Thyroid hormone (TH) helps control this timing both in vitro and in vivo, but it is still uncertain how it does so. TH acts through nuclear receptors that are encoded by two genes, TRalpha and TRbeta. Previous studies suggested that TRbeta receptors may mediate the effect of TH on oligodendrocyte precursor cells (OPCs). Consistent with this possibility, we show here that overexpression of TRbeta1 promotes precocious oligodendrocyte differentiation, whereas expression of two dominant-negative forms of TRbeta1 greatly delays differentiation. Surprisingly, however, we find that postnatal TRbeta-/- mice have a normal number of oligodendrocytes in their optic nerves and that TRbeta-/- OPCs stop dividing and differentiate normally in response to TH in vitro. Moreover, we find that OPCs do not express TRbeta1 or TRbeta2 mRNAs, whereas they do express TRalpha1 and TRalpha2 mRNAs. These findings suggest that alpha receptors mediate the effect of TH on the timing of oligodendrocyte differentiation. We also show that TRalpha2 mRNA, which encodes a dominant-negative form of TRalpha, decreases as OPCs proliferate in vitro and in vivo. This decrease may help control when oligodendrocyte precursors differentiate.  相似文献   

18.
19.
The HIV envelope glycoprotein gp120 binds with high affinity to CD4 and is responsible for the tropism of HIV for CD4+ T cells and monocytes. Efforts to develop HIV vaccines have focused on gp120 and, therefore, a detailed molecular understanding of human immune responses to gp120 is essential. In this report, we have used human T cell clones specific for gp120 to examine the processing and presentation of gp120 to T cells. In particular, we examined the role of the CD4 that is expressed at low levels on the surfaces of human monocytes in the presentation of gp120 by monocytes. The presentation of gp120 to gp120-specific human T cell clones was blocked by pretreatment of monocytes with anti-CD4 mAb. Blocking of monocyte CD4 with anti-CD4 did not inhibit presentation of other Ag or of synthetic peptides representing epitopes within gp120 recognized by gp120-specific T cell clones. These results indicated that the anti-CD4-mediated inhibition occurred at the level of the monocyte, was specific for the gp120 response, and was operative at the initial Ag uptake phase of the Ag-processing pathway. Definitive confirmation that monocyte CD4 functions in the initial uptake step of the gp120-processing pathway was obtained by using soluble CD4 to block the interaction of gp120 with monocyte CD4. These results demonstrate that gp120 expressed by human monocytes plays an important role in the initial uptake of gp120 by monocytes and that gp120 taken up via CD4 is subsequently processed to allow for exposure of epitopes recognized by gp120-specific human T cells. At limiting gp120 concentrations, uptake via CD4 is essential for the presentation of gp120.  相似文献   

20.
In the present study, we have investigated the potential regulation of thyroglobulin (Tg) and extracellular matrix components synthesis by thyroid-stimulating hormone (TSH) and tetradecanoyl phorbol-13-acetate (TPA) on thyroid cells. Porcine thyroid cells isolated by trypsin-EGTA digestion of thyroid glands were maintained in serum containing medium on poly (L-lysine)-coated dishes. Cells differentiated into follicular or vesicular-like structures were distinguished by their ability to organify Na[125l] and to respond to TSH stimulation. After an incubation of the cells with radiolabeled proline or methionine, two major proteins were identified, p450–480 and p290 (so named because of their molecular masses). Tg (p290) synthesis was demonstrated by the synthesis of [131l]-labeled polypeptides with electrophoretic properties identical to those of authentic Tg molecules. P450–480 resolved to Mr 190,000 under reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) conditions. It was identified as thrombospondin by its reactivity with a monoclonal anti-human thrombospondin and by peptide sequencing of some of its tryptic fragments that displayed identity to thrombospondin l. Collagen synthesis was demonstrated by the formation of radioactive hydroxyproline and by the synthesis of pepsin-resistant polypeptides ranging from Mrs 120,000 to 200,000. When the cells were cultured in the presence of 100 nM TPA, the culture medium contents of thrombospondin and collagen were increased by 2.7 and 1.6-fold, respectively, whereas Tg content was decreased by a factor 3.9. In contrast, the acute treatment of control cells with TPA induced a decrease in both Tg and collagen content by factors 3.0 and 1.5, respectively, and an increase in thrombospondin content by a factor 2.5. In the presence of 100 nM TPA, TSH (1 mU/ml) did not counteract the stimulating effect of TPA on extracellular matrix components synthesis. In contrast, when cells were cultured in the presence of TSH alone at concentrations higher than 0.1 mU/ml, collagen and thrombospondin in the medium were decreased by a factor 2.0 and 1.9, respectively, and TSH preferentially activated Tg synthesis. However, no acute response to TSH was observed in cells incubated for 2 days without effectors (control cells). On TSH differentiated cells, TPA decreased both collagen and Tg accumulation by factor 1.2 and 1.8, respectively, whereas it increased the one of thrombospondin by a factor 2. These results, together with the stimulating effect of TPA on TSH mediated cell proliferation, argue for a role of thrombospondin in cell adhesion and migration events within the thyroid epithelium. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号