首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mineralization of the articular cartilage is a pathological condition associated with age and certain joint diseases in humans and other mammals. In this work, we describe a physiological process of articular cartilage mineralization in bullfrogs. Articular cartilage of the proximal and distal ends of the femur and of the proximal end of the tibia-fibula was studied in animals of different ages. Mineralization of the articular cartilage was detected in animals at 1 month post-transformation. This mineralization, which appeared before the hypertrophic cartilage showed any calcium deposition, began at a restricted site in the lateral expansion of the cartilage and then progressed to other areas of the epiphyseal cartilage. Mineralized structures were identified by von Kossa's staining and by in vivo incorporation of calcein green. Element analysis showed that calcium crystals consisted of poorly crystalline hydroxyapatite. Mineralized matrix was initially spherical structures that generally coalesced after a certain size to occupy larger areas of the cartilage. Alkaline phosphatase activity was detected at the plasma membrane of nearby chondrocytes and in extracellular matrix. Apoptosis was detected by the TUNEL (TDT-mediated dUTP-biotin nick end-labeling) reaction in some articular chondrocytes from mineralized areas. The area occupied by calcium crystals increased significantly in older animals, especially in areas under compression. Ultrastructural analyses showed clusters of needle-like crystals in the extracellular matrix around the chondrocytes and large blocks of mineralized matrix. In 4-year-old animals, some lamellar bone (containing bone marrow) occurred in the same area as articular cartilage mineralization. These results show that the articular cartilage of R. catesbeiana undergoes precocious and progressive mineralization that is apparently stimulated by compressive forces. We suggest that this mineralization is involved in the closure of bone extremities, since mineralization appears to precede the formation of a rudimentary secondary center of ossification in older animals.  相似文献   

2.
The presence of vitamin-D-dependent calcium-binding protein (CaBP-9K) in tibial growth-plate cartilage was immunohistochemically demonstrated using a specific antibody to rat duodenal CaBP-9K. The protein was found to be mainly localized in the cytoplasm of maturing chondrocytes. In hypertrophic chondrocytes, CaBP-9K concentrations decreased, and the protein was found in the cytoplasmic processes. No CaBP-specific immunoreactivity was seen in the hypertrophic chondrocytes of the lower calcified hypertrophic zone; in contrast, the protein was found in the extracellular lateral edges of longitudinal septa, i.e. where matrix vesicles are preferentially localized and where cartilage mineralization is initiated. These findings suggest that vitamin D has a direct function in this tissue. It also seems likely that CaBP-9K is an indicator of chondrocyte maturation, and that it is involved in the matrix vesicle-associated process of cartilage calcification.  相似文献   

3.
Summary The presence of vitamin-D-dependent calcium-binding protein (CaBP-9K) in tibial growth-plate cartilage was immunohistochemically demonstrated using a specific antibody to rat duodenal CaBP-9K. The protein was found to be mainly localized in the cytoplasm of maturing chondrocytes. In hypertrophic chondrocytes, CaBP-9K concentrations decreased, and the protein was found in the cytoplasmic processes. No CaBP-specific immunoreactivity was seen in the hypertrophic chondrocytes of the lower calcified hypertrophic zone; in contrast, the protein was found in the extracellular lateral edges of longitudinal septa, i.e. where matrix vesicles are preferentially localized and where cartilage mineralization is initiated. These findings suggest that vitamin D has a direct function in this tissue. It also seems likely that CaBP-9K is an indicator of chondrocyte maturation, and that it is involved in the matrix vesicle-associated process of cartilage calcification.  相似文献   

4.
Matrix vesicles have a critical role in the initiation of mineral deposition in skeletal tissues, but the ways in which they exert this key function remain poorly understood. This issue is made even more intriguing by the fact that matrix vesicles are also present in nonmineralizing tissues. Thus, we tested the novel hypothesis that matrix vesicles produced and released by mineralizing cells are structurally and functionally different from those released by nonmineralizing cells. To test this hypothesis, we made use of cultures of chick embryonic hypertrophic chondrocytes in which mineralization was triggered by treatment with vitamin C and phosphate. Ultrastructural analysis revealed that both control nonmineralizing and vitamin C/phosphatetreated mineralizing chondrocytes produced and released matrix vesicles that exhibited similar round shape, smooth contour, and average size. However, unlike control vesicles, those produced by mineralizing chondrocytes had very strong alkaline phosphatase activity and contained annexin V, a membrane-associated protein known to mediate Ca2+ influx into matrix vesicles. Strikingly, these vesicles also formed numerous apatite-like crystals upon incubation with synthetic cartilage lymph, while control vesicles failed to do so. Northern blot and immunohistochemical analyses showed that the production and release of annexin V-rich matrix vesicles by mineralizing chondrocytes were accompanied by a marked increase in annexin V expression and, interestingly, were followed by increased expression of type I collagen. Studies on embryonic cartilages demonstrated a similar sequence of phenotypic changes during the mineralization process in vivo. Thus, chondrocytes located in the hypertrophic zone of chick embryo tibial growth plate were characterized by strong annexin V expression, and those located at the chondro–osseous mineralizing border exhibited expression of both annexin V and type I collagen. These findings reveal that hypertrophic chondrocytes can qualitatively modulate their production of matrix vesicles and only when induced to initiate mineralization, will release mineralization-competent matrix vesicles rich in annexin V and alkaline phosphatase. The occurrence of type I collagen in concert with cartilage matrix calcification suggests that the protein may facilitate crystal growth after rupture of the matrix vesicle membrane; it may also offer a smooth transition from mineralized type II/type X collagen-rich cartilage matrix to type I collagen-rich bone matrix.  相似文献   

5.
Matrix vesicles (MVs) are extracellular organelles that initiate mineral formation, accumulating inorganic phosphate (P(i)) and calcium leading to the formation of hydroxyapatite (HA) crystals, the main mineral component of bones. MVs are produced during bone formation, as well as during the endochondral calcification of cartilage. MVs are released into the extracellular matrix from osseous cells such as osteoblasts and hypertrophic chondrocytes. In this report, using 1-D SDS-PAGE, in-gel tryptic digestion and an LC-MS-MS/MS protein identification protocol, we characterized the proteome of MVs isolated from chicken embryo (Gallus gallus) bones and cartilage. We identified 126 gene products, including proteins related to the extracellular matrix and ion transport, as well as enzymes, cytoskeletal, and regulatory proteins. Among the proteins recognized for the first time in MVs were aquaporin 1, annexin A1 (AnxA1), AnxA11, glycoprotein HT7, G(i) protein alpha2, and scavenger receptor type B. The pathways for targeting the identified proteins into MVs and their particular functions in the biomineralization process are discussed. Obtaining a knowledge of the functions and roles of these proteins during embryonic mineralization is a prerequisite for the overall understanding of the initial mineral formation mechanisms.  相似文献   

6.
Previously, we showed that expression of a dominant-negative form of the transforming growth factor beta (TGF-beta) type II receptor in skeletal tissue resulted in increased hypertrophic differentiation in growth plate and articular chondrocytes, suggesting a role for TGF-beta in limiting terminal differentiation in vivo. Parathyroid hormone-related peptide (PTHrP) has also been demonstrated to regulate chondrocyte differentiation in vivo. Mice with targeted deletion of the PTHrP gene demonstrate increased endochondral bone formation, and misexpression of PTHrP in cartilage results in delayed bone formation due to slowed conversion of proliferative chondrocytes into hypertrophic chondrocytes. Since the development of skeletal elements requires the coordination of signals from several sources, this report tests the hypothesis that TGF-beta and PTHrP act in a common signal cascade to regulate endochondral bone formation. Mouse embryonic metatarsal bone rudiments grown in organ culture were used to demonstrate that TGF-beta inhibits several stages of endochondral bone formation, including chondrocyte proliferation, hypertrophic differentiation, and matrix mineralization. Treatment with TGF-beta1 also stimulated the expression of PTHrP mRNA. PTHrP added to cultures inhibited hypertrophic differentiation and matrix mineralization but did not affect cell proliferation. Furthermore, terminal differentiation was not inhibited by TGF-beta in metatarsal rudiments from PTHrP-null embryos; however, growth and matrix mineralization were still inhibited. The data support the model that TGF-beta acts upstream of PTHrP to regulate the rate of hypertrophic differentiation and suggest that TGF-beta has both PTHrP-dependent and PTHrP-independent effects on endochondral bone formation.  相似文献   

7.
We have developed methodology that enables alkaline phosphatase (ALP) to be histochemically stained reproducibly in decalcified paraffin-embedded bone and cartilage of rodents. Proximal tibiae and fourth lumbar vertebrae were fixed in periodate-lysine-paraformaldehyde (PLP) fixative, decalcified in an EDTA-G solution, and embedded in paraffin. In the articular cartilage of the proximal tibia, ALP activity was localized to the hypertrophic chondrocytes and cartilage matrix of the deep zone and the maturing chondrocytes of the intermediate zone. The cells and matrix in the superficial zone did not exhibit any enzyme activity. In tibial and vertebral growth plates, a progressive increase in ALP expression was seen in chondrocytes and cartilage matrix, with activity being weakest in the proliferative zone, higher in the maturing zone, and highest in the hypertrophic zone. In bone tissue, ALP activity was detected widely in pre-osteoblasts, osteoblasts, lining cells on the surface of trabeculae, some newly embedded osteocytes, endosteal cells, and subperiosteal cells. In areas of new bone formation, ALP activity was detected in osteoid. In the bone marrow, about 20% of bone marrow cells expressed ALP activity. In adult rats, the thickness of the growth plates was less and ALP activity was enhanced in maturing and hypertrophic chondrocytes, cartilage matrix in the hypertrophic zone, and primary spongiosa. This is the first time that ALP activity has been successfully visualized histochemically in decalcified, paraffin-embedded mineralized tissues. This technique should prove to be a very convenient adjunct for studying the behavior of osteoblasts during osteogenesis.  相似文献   

8.
The purpose of this study was to examine the morphological changes in an in vitro system in which the two elements of bone modelling, formation and resorption, could be studied simultaneously. Pregnant mice were killed on days 15, 16 and 17 of gestation, the fetuses were removed and the radii and ulnae dissected free of soft tissue. The bones were cultured for 6 days in media (BGJ) supplemented with 20% fetal calf serum and 150 micrograms/ml vitamin C. Growth and mineralization were estimated by measuring the total length of the bone, and diaphysis, and by light and transmission electron microscopy (TEM). The results of this study indicate that there is a continuous measurable increase in the total length of fetal mouse long bones over the 6 days of culture. These bones show a continuous growth of periosteal bone, with mesenchymal tissue penetrating into the diaphyseal shaft, and development of bone marrow like tissue. TEM examination showed differentiation of mesenchymal cells to osteoblasts, formation of new bone matrix and bone mineralization similar to that found in developmentally matched controls. In the cartilagenous epiphyses, however, many hydroxyapatite crystals were not associated with matrix vesicles. In addition, some of the chondrocytes of the hypertrophic zone appeared to be dedifferentiating into mesenchymal cells with osteoblast-like features. In spite of the lack of osteoclasts in the 15- and 16-day explants, osteoclasts appeared in the diaphysis after 2 and 4 days in culture. Our results suggest that this system can serve as a good model for the study of bone formation and resorption as they occur, simultaneously, during bone modelling.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Summary Study of the deep articular cartilage and adjacent calcified cartilage has been limited by the lack of an in vitro culture system which mimics this region of the cartilage. In this paper we describe a method to generate mineralized cartilagenous tissue in culture using chondrocytes obtained from the deep zone of bovine articular cartilage. The cells were plated on Millipore CMR filters. The chondrocytes in culture accumulated extracellular matrix and formed cartilagenous tissue which calcified when β-glycerophosphate was added to the culture medium. The cartilagenous tissue generated in vitro contains both type II and type X collagens, large sulfated proteoglycans, and alkaline phosphatase activity. Ultrastructurally, matrix vesicles were seen in the extracellular matrix. Selected area electron diffraction confirmed that the calcification was composed of hydroxyapatite crystals. The chondrocytes, as characterized thus far, appear to maintain their phenotype under these culture conditions which suggests that these cultures could be used as a model to examine the metabolism of cells from the deep zone of cartilage and mineralization of cartilagenous tissue in culture.  相似文献   

10.
We examined bovine fetal epiphyseal and growth plate cartilages by immunofluorescence microscopy and immunoelectron microscopy using monospecific antibodies to a newly discovered cartilage-matrix calcium-binding protein that we now call chondrocalcin. Chondrocalcin was evenly distributed at relatively low concentration in resting fetal epiphyseal cartilage. In growth plate cartilage, it was absent from the extracellular matrix in the zone of proliferating chondrocytes but was present in intracellular vacuoles in proliferating, maturing and upper hypertrophic chondrocytes. The protein then disappeared from the lower hypertrophic chondrocytes and appeared in the adjoining extracellular matrix, where it was selectively concentrated in the longitudinal septa in precisely the same location where amorphous mineral was deposited in large amounts as demonstrated by von Kossa staining and electron microscopy. Mineral then spread out from these "nucleation sites" to occupy much of the surrounding matrix. Matrix vesicles were identified in this calcifying matrix but they bore no observable morphological relationship to these major sites of calcification where chondrocalcin was concentrated. Since chondrocalcin is a calcium-binding protein and has a strong affinity for hydroxyapatite, these observations suggest that chondrocalcin may play a fundamental role in the creation of nucleation sites for the calcification of cartilage matrix in endochondral bone formation.  相似文献   

11.
A glycoprotein that exhibits alkaline phosphatase activity and binds Ca2+ with high affinity has been extracted and purified from cartilage matrix vesicles by fast protein liquid chromatography. Antibodies against this glycoprotein were used to analyze its distribution in chondrocytes and in the matrix of calcifying cartilage. Under the light microscope, using immunoperoxidase or immunofluorescence techniques, the glycoprotein is localized in chondrocytes of the resting zone. At this level, the extracellular matrix does not show any reaction. In the cartilage plate, between the proliferating and the hypertrophic region, a weak immune reactivity is seen in the cytoplasm, whereas in the intercolumnar matrix the collagen fibers appear clearly stained. Stained granular structures, distributed with a pattern similar to that of matrix vesicles, are also visible. Calcified matrix is the most stained area. These results were confirmed under the electron microscope using both immunoperoxidase and protein A-gold techniques. In parallel studies, enzyme activity was also analyzed by histochemical methods. Whereas resting cartilage, the intercellular matrix of the resting zone, and calcified matrix do not exhibit any enzyme activity, the zones of maturing and hypertrophic chondrocytes are highly reactive. Some weak reactivity is also shown by chondrocytes of the resting zone. The observation that this glycoprotein (which binds Ca2+ and has alkaline phosphatase activity) is synthesized in chondrocytes and is exported to the extracellular matrix at the time when calcification begins, suggests that it plays a specific role in the process of calcification.  相似文献   

12.
The present study focused on the hypertrophic cell zone and the adjacent region of primary spongiosa in the mandibular condylar cartilage in growing rats (3 to 7 weeks old). In this cartilage, chondrocytes were not arranged in columns, and there was no clear distinction between longitudinal and transverse septum. The hypertrophic chondrocytes were not surrounded entirely by calcified matrix, and capillaries were in close contact with cartilage cells. The staining intensity of the pericellular matrix decreased in the lower hypertrophic cell zone in comparison with that in the upper part of the hypertrophic cell zone. Electron microscopic examinations indicated that the lowest hypertrophic cells contained lysosomes and pinocytotic vesicles. Some hypertrophic chondrocytes appeared to have been released from their lacunae and were observed in the region of the primary spongiosa. Hence it is suggested that the lowest hypertrophic chondrocytes in the rat mandibular condyle do not die but are released from their lacunae into the bone marrow. Further study is needed to determine whether or not these cells do indeed become osteoblasts and/or chondroclasts.  相似文献   

13.
Annexin A6 (AnxA6) is highly expressed in hypertrophic and terminally differentiated growth plate chondrocytes. Rib chondrocytes isolated from newborn AnxA6-/- mice showed delayed terminal differentiation as indicated by reduced terminal differentiation markers, including alkaline phosphatase, matrix metalloproteases-13, osteocalcin, and runx2, and reduced mineralization. Lack of AnxA6 in chondrocytes led to a decreased intracellular Ca(2+) concentration and protein kinase C α (PKCα) activity, ultimately resulting in reduced extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) activities. The 45 C-terminal amino acids of AnxA6 (AnxA6(1-627)) were responsible for the direct binding of AnxA6 to PKCα. Consequently, transfection of AnxA6-/- chondrocytes with full-length AnxA6 rescued the reduced expression of terminal differentiation markers, whereas transfection of AnxA6-/- chondrocytes with AnxA6(1-627) did not or only partially rescued the decreased mRNA levels of terminal differentiation markers. In addition, lack of AnxA6 in matrix vesicles, which initiate the mineralization process in growth plate cartilage, resulted in reduced alkaline phosphatase activity and Ca(2+) and inorganic phosphate (P(i)) content and the inability to form hydroxyapatite-like crystals in vitro. Histological analysis of femoral, tibial, and rib growth plates from newborn mice revealed that the hypertrophic zone of growth plates from newborn AnxA6-/- mice was reduced in size. In addition, reduced mineralization was evident in the hypertrophic zone of AnxA6-/- growth plate cartilage, although apoptosis was not altered compared with wild type growth plates. In conclusion, AnxA6 via its stimulatory actions on PKCα and its role in mediating Ca(2+) flux across membranes regulates terminal differentiation and mineralization events of chondrocytes.  相似文献   

14.
Endochondral ossification in the growth cartilage of long bones from the bullfrog Rana catesbeiana was examined. In stage-46 tadpoles and 1-year-old animals, the hypertrophic cartilage had a smooth contact with the bone marrow and the matrix showed no calcification or endochondral bone formation. In spite of showing no aspects of calcification, the chondrocytes exhibited alkaline phosphatase activity and some of them died by apoptosis. However, matrix calcification and endochondral ossification were observed in 2-year-old bullfrogs. Calcium deposits appeared as isolated or coalesced spherical structures in the extracellular matrix of hypertrophic cartilage. Bone trabeculae were restricted to the central area at the sites where the hypertrophic cartilage surface was exposed to the bone marrow. Cartilage matrix calcification and the formation of bone trabeculae were not dependent on each other. Osteoclasts were involved in calcified matrix resorption. These results demonstrate that the calcification of hypertrophic cartilage and the deposition of bone trabeculae are late events in R. catesbeiana and do not contribute to the development and growth of long bones in adults. These processes may play a role in reinforcing bony structures as the bullfrog gains weight in adulthood. In addition, the deposition of bone trabeculae is not dependent on cartilage matrix calcification.  相似文献   

15.
To date, little is known about the structure of the cells and the fibrillar matrix of the globuli ossei, globular structures showing histochemical properties of an osseous tissue, sometimes found in the resorption front of the hypertrophied cartilage in many tetrapods, and easily observed in the long bones of the Urodele Pleurodeles waltl. Here, we present the results obtained from the appendicular long bones of metamorphosed juveniles and subadults using histological and histochemical methods and transmission electron microscopy. The distal part of the cone‐shaped cartilage contains a heterogeneous cell population composed of the typical “light” hypertrophic chondrocytes and scarce “dark” hypertrophic chondrocytes. The “dark” chondrocytes display ultrastructural characteristics suggesting that they probably undergo degeneration through chondroptosis. However, in the hypertrophic, calcified cartilage close to the erosion front by the marrow, several noninvaded chondrocytic lacunae retained cells that do not show any morphological characteristics of degeneration and that cannot be identified as regular chondrocytes or osteocytes. These modified chondrocytes that have lost their regular morphology, appear to be active in the terminal cartilage and synthesize collagen fibrils of a peculiar diameter intermediate between the Type I collagen found in bone and the Type II collagen characteristic of cartilage. It is suggested that the local occurrence of globuli ossei is linked to a low rate of longitudinal growth as is the case in the long bones of postmetamorphic urodeles. J. Morphol. 275:1226–1237, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
The ultrastructural localization of alkaline phosphatase (A1P) activity has been demonstrated in epiphyseal growth cartilage and metaphyseal bone of rats. Epiphyso-metaphyseal specimens were decalcified with EDTA and treated with MgCl2 to regenerate the enzymatic activity before incubation in a medium containing beta-glycerophosphate, MgCl2 and CeCl3. A1P activity was present on the outer surface of the plasmamembrane of maturing and hypertrophic chondrocytes and of osteoblasts. Moreover, the reaction product was present in chondrocyte lacunae, in matrix vesicles, and in cartilage matrix, as well as among uncalcified collagen fibrils of osteoid tissue in bone. The intensity of reaction was the lowest, or completely lacking, where the degree of matrix calcification was the highest. These results suggest that alkaline phosphatase is transported from the cells into the cartilage and bone matrix by its association with matrix vesicles and plasmamembrane components, and that its activity in cartilage and bone matrix is inhibited as it is incorporated in the mineral substance.  相似文献   

17.
The two aggrecanases ADAMTS-4 and ADAMTS-5 have been shown to not only play roles in the breakdown of cartilage extracellular matrix in osteoarthritis, but also mediate processing of matrilins in the secretory pathway. The matrilins are adaptor proteins with a function in connecting fibrillar and network-like components in the cartilage extracellular matrix. Cleavage resulting in processed matrilins with fewer ligand-binding subunits could make these less efficient in providing matrix cohesion. In this study, the processing and degradation of matrilin-4 during cartilage remodeling in the growth plate of the developing mouse long bones were studied in greater detail. We show that ADAMTS-5 and a matrilin-4 neoepitope, revealed upon ADAMTS cleavage, colocalize in prehypertrophic/hypertrophic chondrocytes while they are not detected in proliferating chondrocytes of the growth plate. ADAMTS-5 and the cleaved matrilin-4 are preferentially detected in vesicles derived from the Golgi apparatus. The matrilin-4 neoepitope was not observed in the growth plate of ADAMTS-5 deficient mice. We propose that in the growth plate ADAMTS-5, and not ADAMTS-4, has a physiological function in the intracellular processing of matrilins and potentially of other extracellular matrix proteins.  相似文献   

18.
Summary The ultrastructural localization of alkaline phosphatase (AlP) activity has been demonstrated in epiphyseal growth cartilage and metaphyseal bone of rats. Epiphyso-metaphyseal specimens were decalcified with EDTA and treated with MgCl2 to regenerate the enzymatic activity before incubation in a medium containing beta-glycerophosphate, MgCl2 and CeCl3. AlP activity was present on the outer surface of the plasmamembrane of maturing and hypertrophic chondrocytes and of osteoblasts. Moreover, the reaction product was present in chondrocyte lacunae, in matrix vesicles, and in cartilage matrix, as well as among uncalcified collagen fibrils of osteoid tissue in bone. The intensity of reaction was the lowest, or completely lacking, where the degree of matrix calcification was the highest. These results suggest that alkaline phosphatase is transported from the cells into the cartilage and bone matrix by its association with matrix vesicles and plasmamembrane components, and that its activity in cartilage and bone matrix is inhibited as it is incorporated in the mineral substance.  相似文献   

19.
Summary Various patterns of mineralization are found in the organism during fetal and postnatal development. Different findings and theories have been published in the literature with regard to the mechanisms of mineralization, many of which are controversely discussed. In the present study the different patterns of mineralization observed in the organoid culture system of fetal rat calvarial cells were investigated by electron microscopy. In organoid culture, calvarial cells grow and differentiate at high density, and deposition of osteoid and mineralization of the matrix occur to a very high extent. Different types of mineralization could be observed more or less simultaneously. It was found that hydroxyapatite crystals were formed at collagen fibrils as well as in the interfibrillar space. Mineralization was frequently seen in necrotic cells and cellular remnants as well as in extra-and intracellular vesicles. Addition of bone or dentin matrices or the artificial hydroxyapatite Interpore 200 to the cells caused an increased mineralization in the vicinity and on the surface of the matrices with and without participation of collagen. On previously formed mineralized nodules, an apposition of mineralizing material appeared due to matrix secretion by osteoblasts. It is concluded that initiation of mineralization occurs-at least in vitro-at every nucleation point under appropriate conditions. These mineralization foci enlarge by further apposition as well as by cellular secretion of a mineralizing matrix. Furthermore, cell necroses may liberate mineralizable vesicles. All these patterns of mineralization are the result of different activities of one cell type.  相似文献   

20.
Chondrocytes of the growth plate are differentiating cells. Their evolution leads to matrix vesicle formation and to cartilage mineralization. This is an in vitro study of the plasma membrane of chondrocytes at two differentiation stages. Differences in protein and glycoprotein components, increased membrane fluidity, and responsiveness to PTH indicate that hypertrophic ("ossifying") chondrocytes possess a plasma membrane widely different from that of resting chondrocytes. Their plasma membrane is particularly enriched in alkaline phosphatase (Mr 70K). Purified matrix vesicles contain the 70K form of alkaline phosphatase, but a 50K species is also detectable, a signal of degradative process. In fact, proteins and glycoproteins of matrix vesicles are less numerous than those of cell plasma membranes. It is suggested that, in vivo, matrix vesicle formation may be mediated by Ca2(+)-activated neutral proteases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号