首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent collections and the type specimen of Marasmiellus juniperinus, the type species of the genus, were examined. Phylogenetic placement, based on ribosomal large subunit (LSU) and internally transcribed spacer (ITS) sequences, is within the lentinuloid clade, nested among Gymnopus taxa. This placement dictates genus name usage and phylogenetic position of other putative species of Marasmiellus. The mating system is tetrapolar.  相似文献   

2.
3.
Two new species of the fungal genus Trichoderma, Trichoderma compactum and Trichoderma yunnanense, isolated from rhizosphere of tobacco in Yunnan Province, China are described based on morphological characters and phylogenetic analyses of nucleotide sequences. Our DNA sequences included the internal transcribed spacer (ITS) regions of the rDNA cluster (ITS1 and ITS2), and partial sequences of the translation elongation factor 1-alpha (tef1) and a fragment of the gene coding for endochitinase 42 (ech42). The analyses show that T. compactum belongs to the Harzianum clade, and T. yunnanense belongs to the Hamatum clade.  相似文献   

4.
Three new species of Candida and a new combination in the genus Hyphopichia are proposed from phylogenetic analysis of nucleotide divergence in domains D1/D2 of the large subunit (26S) rDNA. The new taxa and their type strains are the following: Candida bentonensis sp. nov. (NRRL YB-2364, CBS 9994), Candida hispaniensis sp. nov. (NRRL Y-5580, CBS 9996), Candida pseudorhagii sp. nov. (NRRL YB-2076, CBS 9998) and Hyphopichia heimii comb. nov. (NRRL Y-7502, CBS 6139), basionym Pichia heimii Pignal. Phylogenetic analysis placed C. pseudorhagii and H. heimii in the Hyphopichia clade whereas C. bentonensis and C. hispaniensis are members of the Yarrowia clade.  相似文献   

5.
Phylogenetic relations within the genus Gordonia were analyzed using partial gyrB and secA1 gene sequences of 23 type species in comparison with those of 16S rRNA gene. The gyrB and secA1 phylogenies showed agreement with that constructed using 16S rRNA gene sequences. The degrees of divergence of the gyrB and secA1 genes were approximately 3.4 and 1.7 times greater, respectively, than that of 16S rRNA gene. The gyrB gene showed more discriminatory power than either the secA1 or 16S rRNA gene, facilitating clear differentiation of any two Gordonia species using gyrB gene analysis. Our data indicate that gyrB and secA1 gene sequences are useful as markers for phylogenetic study and identification at the species level of the genus Gordonia.  相似文献   

6.
The relationship between Litsea and related genera is currently unclear. Previous molecular studies on these taxa using cpDNA and nrITS were unable to produce well-resolved phylogenetic trees. In this study, we explored the potential of the rpb2 gene as a source of molecular information to better resolve the phylogenetic analysis. Although rpb2 was believed to be a single-copy gene, our cloning results showed that most species examined possessed several copies of these sequences. However, the genetic distance among copies from any one species was low, and these copies always formed monophyletic groups in our molecular trees. Our phylogenetic analyses of rpb2 data resulted in better resolved tree topologies compared to those based on cpDNA or nrITS data. Our results show that monophyly of the genus Litsea is supported only for section Litsea. As a genus, Litsea was shown to be polyphyletic. The genera Actinodaphne and Neolitsea were resolved as monophyletic groups in all analyses. They were also shown to be sisters and closer to the genus Lindera than to the genus Litsea. Our results also revealed that the genus Lindera is not a monophyletic group.  相似文献   

7.
Partial gyrB sequences (>1 kb) were obtained from 34 type strains of the genus Amycolatopsis. Phylogenetic trees were constructed to determine the effectiveness of using this gene to predict taxonomic relationships within the genus. The use of gyrB sequence analysis as an alternative to DNA–DNA hybridization was also assessed for distinguishing closely related species. The gyrB based phylogeny mostly confirmed the conventional 16S rRNA gene-based phylogeny and thus provides additional support for certain of these 16S rRNA gene-based phylogenetic groupings. Although pairwise gyrB sequence similarity cannot be used to predict the DNA relatedness between type strains, the gyrB genetic distance can be used as a means to assess quickly whether an isolate is likely to represent a new species in the genus Amycolatopsis. In particular a genetic distance of >0.02 between two Amycolatopsis strains (based on a 315 bp variable region of the gyrB gene) is proposed to provide a good indication that they belong to different species (and that polyphasic taxonomic characterization of the unknown strain is worth undertaking). Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. The GenBank accession numbers for the gyrB gene sequences obtained in this study are shown in Table 1.  相似文献   

8.
Two new yeasts are described that were recognized as novel from nucleotide divergence in domains D1/D2 of 26S rDNA. The new species and their type strains are the following: Trichomonascus petasosporus NRRL YB-2092T (CBS 9602T), mating type a, NRRL YB-2093 (CBS 9603), mating type alpha, and Sympodiomyces indianaensis NRRL YB-1950T (CBS 9600T). Phylogenetic analysis placed the two new taxa, which are sister species, in the Sympodiomyces clade near Blastobotrys/Stephanoascus farinosus. Placement of Trichomonascus in the Saccharomycetales resolves the earlier uncertainties surrounding the classification of this morphologically unusual genus.  相似文献   

9.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

10.
We have investigated the floral ontogeny of Arillastrum, Allosyncarpia, Stockwellia and Eucalyptopsis (of the eucalypt group, Myrtaceae) using scanning electron microscopy and light microscopy. Several critical characters for establishing relationships between these genera and to the eucalypts have been determined. The absence of compound petaline primordia in Arillastrum, Allosyncarpia, Stockwellia and Eucalyptopsis excludes these taxa from the eucalypt clade. Post-anthesis circumscissile abscission of the hypanthium above the ovary in Stockwellia, Eucalyptopsis and Allosyncarpia is evidence that these three taxa form a monophyletic group; undifferentiated perianth parts and elongated fusiform buds are characters that unite Stockwellia and Eucalyptopsis as sister taxa. No floral characters clearly associate Arillastrum with either the eucalypt clade or the clade of Stockwellia, Eucalyptopsis and Allosyncarpia.We gratefully acknowledge Clyde Dunlop and Bob Harwood (Northern Territory Herbarium) for collecting specimens of Allosyncarpia, and Bruce Gray (Atherton) for collecting specimens of Stockwellia. The Australian National Herbarium (CANB) kindly lent herbarium specimens of Eucalyptopsis for examination. This research was supported by a University of Melbourne Research Development Grant to Andrew Drinnan.  相似文献   

11.
A nuclear gene, FLOWERING LOCUS T (FT) homolog, was cloned from Phyllostachys meyeri as PmFT. Its putative copy number was estimated as four by Southern blot analysis, and the two copies were completely sequenced. Twenty-seven FT homolog sequences of bambusoid and early diverging grasses comprised 172-bp exons, and 357- to 785-bp introns exhibited 0-58.9% pairwise divergence with six modal levels. Parsimony analyses of the FT homologs rooted at Pharus virescens produced six equally parsimonious trees. In the strict consensus tree, five clades were resolved; they were affected by divergence of the intron region rather than exon region. The basal clade was Puelioideae, followed by Olyreae clade including Oryza sativa. Streptogyneae clade combined the Olyreae clade with terminal sister clades of the Bambuseae, i.e., pantropical bamboos and East Asiatic temperate bamboos. The global topology suggested that FT homologs are significant for resolving the tribe level. However, the phylogeny of FT homologs does not resolve monophyly in Bambusoideae because of intercalary positioning by Streptogyneae clade. We discussed the role of FT homologs in controlling the inflorescence architecture and position of Streptogyneae in the bamboo phylogeny.  相似文献   

12.
In this study, Borrelia lusitaniae DNA extracted from ticks and lizards was used to amplify the outer surface protein A (OspA) gene in order to increase knowledge about sequence variability in the Mediterranean basin area, to better understand how Borrelia lusitaniae has evolved and how its distribution has expanded. Phylogenetic trees including Italian and reference sequences showed a clear separation of B. lusitaniae OspA strains in two different major clades. North African isolates form a clade with Portuguese POTIB strains, whereas Italian samples are grouped with German strains and a human Portuguese strain. This subdivision was supported by very high posterior probability values in the trees, by both analysis of molecular variance and selective pressure. These results, based on phylogenetic information contained in the OspA gene sequences, show the presence of two different B. lusitaniae strains circulating in the Mediterranean basin area, suggesting two different evolution paths.  相似文献   

13.
Using matK and rbcL sequences (3,269 bp in total) from 113 genera of 45 families, we conducted a combined analysis to contribute to the understanding of major evolutionary relationships in the monocotyledons. Trees resulting from the parsimony analysis are similar to those generated by earlier single or multiple gene analyses, but their strict consensus tree provides much better resolution of relationships among major clades. We find that Acorus (Acorales) is a sister group to the rest of the monocots, which receives 100% bootstrap support. A clade comprising Alismatales is diverged as the next branch, followed successively by Petrosaviaceae, the Dioscoreales–Pandanales clade, Liliales, Asparagales and commelinoids. All of these clades are strongly supported (with more than 90% bootstrap support). The sister-group relationship is also strongly supported between Alismatales and the remaining monocots (except for Acorus) (100%), between Petrosaviaceae and the remaining monocots (except for Acorus and Alismatales) (100%), between the clade comprising Dioscoreales and Pandanales and the clade comprising Liliales, Asparagales and commelinoids (87%), and between Liliales and the Asparagales–commelinoids clade (89%). Only the sister-group relationship between Asparagales and commelinoids is weakly supported (68%). Results also support the inclusion of Petrosaviaceae in its own order Petrosaviales, Nartheciaceae in Dioscoreales and Hanguanaceae in Commelinales.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s10265-003-0133-3  相似文献   

14.
The study of the association of the Human Leukocyte Antigen (HLA) alleles and polymorphic retrotransposons such as Alu, HERV, and LTR at various loci within the Major Histocompatibility Complex allows for a better identification and stratification of disease associations and the origins of HLA haplotypes in different populations. This paper provides sequence and association data on two structurally polymorphic MER9-LTR retrotransposons that are located 54 kb apart and in close proximity to the multiallelic HLA-A gene involved in the regulation of the human immune system. Direct DNA sequencing and analysis of the PCR products identified DNA nucleotide variations between the MER9-LTR sequences at the two loci and their associations with HLA-A alleles as potential haplotype and evolutionary markers. All MER9-LTR sequences were haplotypic when associated with common HLA-A alleles. The number of SNP loci was 2.5 times greater for the solo LTR at the AK locus, which is located closer to the HLA-A gene than the solo or 3′ LTR at the HG locus. Our study shows that the nucleotide variations of the MER9-LTR DNA sequences are additional informative markers in fine mapping HLA-A genomic haplotypes for future population, evolutionary, and disease studies.  相似文献   

15.
Three new yeast species, Candida kashinagacola (JCM 15019(T) = CBS 10903(T)), C. pseudovanderkliftii (JCM 15025(T) = CBS 10904(T)), and C. vanderkliftii (JCM 15029(T) = CBS 10905(T)) are described on the basis of comparison of nucleotide sequences of large subunit ribosomal DNA D1/D2 region (LSU rDNA D1/D2). The nearest assigned species of the three new species was Candida llanquihuensis. Candida kashinagacola and C. pseudovanderkliftii differed from C. llanquihuensis by 3.8% nucleotide substitution of the region, while C. vanderkliftii did by 4.4%. Three new species differed in a number of physiological and growth characteristics from any previously assigned species and from one another. A phylogenetic tree based on the sequences of LSU rDNA D1/D2 showed that these new species together with Candida sp. ST-246, Candida sp. JW01-7-11-1-4-y2, Candida sp. BG02-7-20-001A-2-1 and C. llanquihuensis form a clade near Ambrosiozyma species. The new species did not assimilate methanol as a sole source of carbon, which supported the monophyly of these non methanol-assimilating species which are closely related to the methylotrophic yeasts. Candida kashinagacola was frequently isolated from the beetle galleries of Platypus quercivorus in three different host trees (Quercus serrata, Q. laurifolia and Castanopsis cuspidata) located in the sourthern part of Kyoto, Japan, thus indicating that this species may be a primary ambrosia fungus of P. quercivorus. On the other hand, C. pseudovanderkliftii and C. vanderkliftii were isolated only from beetle galleries in Q. laurifolia. Candida vanderkliftii was isolated from beetle gallery of Platypus lewisi as well as those of P. quercivorus. Candida pseudovanderkliftii and C. vanderkliftii are assumed to be auxiliary ambrosia fungi of P. quercivorus.  相似文献   

16.
It has been shown previously that the rolC gene from Agrobacterium tumefaciens gene was stably and highly expressed in 15-year-old Panax ginseng transgenic cell cultures. In the present report, we analyze in detail the nucleotide composition of the rolC and nptII (neomycin phosphotransferase) genes, which is the selective marker used for transgenic cell cultures of P. ginseng. It has been established that the nucleotide sequences of the rolC and nptII genes underwent mutagenesis during cultivation. Particularly, 1–4 nucleotide substitutions were found per sequence in the 540 and 798 bp segments of the complete rolC and nptII genes, respectively. Approximately half of these nucleotide substitutions caused changes in the structure of the predicted gene product. In addition, we attempted to determine the rate of accumulation of these changes by comparison of DNA extracted from P. ginseng cell cultures from 1995 to 2007. It was observed that the frequency of nucleotide substitutions for the rolC and nptII genes in 1995 was 1.21 ± 0.02 per 1,000 nucleotides analyzed, while in 2007, the nucleotide substitutions significantly increased (1.37 ± 0.07 per 1,000 nucleotides analyzed). Analyzing the nucleotide substitutions, we found that substitution to G or to C nucleotides significantly increased (in 1.9 times) in the rolC and nptII genes compared with P. ginseng actin gene. Finally, the level of nucleotide substitutions in the rolC gene was 1.1-fold higher when compared with the nptII gene. Thus, for the first time, we have experimentally demonstrated the level of nucleotide substitutions in transferred genes in transgenic plant cell cultures.  相似文献   

17.
18.
Smith EJ  Shi L  Tu Z 《Genetica》2005,124(1):23-32
Mitochondrial DNA (mtDNA) sequences remain the most widely used for phylogenetic analysis in birds. A major limitation of mtDNA sequences, however, is that mitochondria genes are inherited as a single linkage group. Here we describe the use of a 540-bp DNA sequence corresponding to the G3 domain of Gallus gallus nuclear aggrecan gene (AGC1) for phylogenetic analysis of the main groups of Galliformes including Phasianidae, Numididae, and Odontophoridae. We also included species from Cracidae and Megapodiidae which are considered by some as Craciformes and others, including here as Galliformes. The uncorrected sequence divergence of the G3 fragments ranges from 1 among the grouses to 36% between some of the distant groups within Galliformes. These sequences contain 39–48% AT nucleotides and the ratios of transition versus transversion are above 1.5 in majority of the comparisons. Using G3 sequences from an Anseriform, Oxyura jamaicensis, as out-groups, phylogenetic trees were obtained using maximum parsimony and distance algorithms and bootstrap analyses. These trees were consistent with those described using Avian sarcoma and leucosis virus gag genes and those from amino acid sequences of hemoglobin and lysozyme c. Our data also support relationships among Galliformes which were defined using mtDNA sequences. In addition to the general support of the five main families of Galliformes, our data are also consistent with previous work that showed Francolinus africanus and Gallus gallus are in the same clade and that Tetraoninae is a well-supported monophyletic subfamily within Phasianidae. The results presented here suggest that the AGC1 sequences meet the criterion of novel nuclear DNA sequences that can be used to help resolve the relationships among Galliformes.  相似文献   

19.
The major histocompatibility complex genes coding for antigen binding and presenting molecules are the most polymorphic genes in the vertebrate genome. We studied the DRA and DQA gene polymorphism of the family Equidae. In addition to 11 previously reported DRA and 24 DQA alleles, six new DRA sequences and 13 new DQA alleles were identified in the genus Equus. Phylogenetic analysis of both DRA and DQA sequences provided evidence for trans-species polymorphism in the family Equidae. The phylogenetic trees differed from species relationships defined by standard taxonomy of Equidae and from trees based on mitochondrial or neutral gene sequence data. Analysis of selection showed differences between the less variable DRA and more variable DQA genes. DRA alleles were more often shared by more species. The DQA sequences analysed showed strong amongst-species positive selection; the selected amino acid positions mostly corresponded to selected positions in rodent and human DQA genes.  相似文献   

20.
MUG1 is a MULE transposon-related domesticated gene in plants. We assessed the sequence diversity, neutrality, expression, and phylogenetics of the MUG1 gene among Oryza ssp. We found MUG1 expression in all tissues analyzed, with different levels in O. sativa. There were 408 variation sites in the 3886 bp of MUG1 locus. The nucleotide diversity of the MUG1 was higher than functionally known genes in rice. The nucleotide diversity (π) in the domains was lower than the average nucleotide diversity in whole coding region. The π values in nonsynonymous sites were lower than those of synonymous sites. Tajima D and Fu and Li D* values were mostly negative values, suggesting purifying selection in MUG1 sequences of Oryza ssp. Genome-specific variation and phylogenetic analyses show a general grouping of MUG1 sequences congruent with Oryza ssp. biogeography; however, our MUG1 phylogenetic results, in combination with separate B and D genome studies, might suggest an early divergence of the Oryza ssp. by continental drift of Gondwanaland. O. longistaminata MUG1 divergence from other AA diploids suggests that it might not be a direct ancestor of the African rice species. These authors contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号