首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated whether inhibition of neutral endopeptidase 24.11 (NEP) and/or angiotensin-converting enzyme (ACE) modifies vagally induced nonadrenergic noncholinergic (NANC) airflow obstruction and airway microvascular leakage as measured by extravasation of Evans blue dye (intravenous) in anesthetized guinea pigs. We gave phosphoramidon to inhibit NEP and enalapril maleate or captopril to inhibit ACE. Animals pretreated with inhaled phosphoramidon (7.5 or 75 nmol), enalapril maleate (87 or 870 nmol), or captopril (350 nmol) reached higher peak lung resistance (RL) values (14.3 +/- 2.7, 15.7 +/- 3.8, 16.7 +/- 3.8, 11.4 +/- 1.6, and 24.6 +/- 3.5 cmH2O.ml-1.s, respectively) than saline-treated animals (5.9 +/- 1.1; P less than 0.05) after bilateral vagus nerve stimulation (5 Hz, 10 V, 10 ms, 150 s). Intravenous phosphoramidon (1 mg/kg), but not intravenous captopril (6 mg/kg), potentiated peak RL (22.9 +/- 6.9 and 7.1 +/- 1.5 cmH2O.ml-1.s, respectively). Vagal nerve stimulation (1 and 5 Hz) increased the extravasation of Evans blue dye in tracheobronchial tissues compared with sham-stimulated animals, but this was not potentiated by inhaled enzyme inhibitors or intravenous captopril. However, intravenous phosphoramidon significantly augmented the extravasation of Evans blue dye in main bronchi and intrapulmonary airways. We conclude that degradative enzymes regulate both NANC-induced airflow obstruction and airway microvascular leakage.  相似文献   

2.
We examined the effects of the selective neutral endopeptidase (NEP) inhibitor SCH32615 on airway responses to rapid intravenous infusions of substance P (SP) and neurokinin A (NKA) and on recovery of administered tachykinins from arterial blood in anesthetized mechanically ventilated guinea pigs. SCH32615, in doses that cause a marked increase in the magnitude of bronchoconstriction induced by infused NKA, had little effect on the changes in pulmonary conductance (GL) or dynamic compliance induced by SP. In animals in which SCH32615 (1 mg/kg) was administered in combination with the angiotensin-converting enzyme (ACE) inhibitor captopril (5.7 mg/kg), the dose of SP required to decrease GL by 50% was fourfold less than in animals that received captopril alone (P < 0.005). SP measured in arterial blood withdrawn within 45 s of intravenous administration of this tachykinin was not different in control and SCH32615-treated animals, whereas captopril caused an approximately threefold increase in SP concentrations (P < 0.005). When SCH32615 and captopril were administered together, significantly more SP was recovered than when captopril or SCH32615 was administered alone (P < 0.0005). Our results are consistent with the hypothesis that both NEP and ACE contribute to the degradation of intravenously infused SP. ACE degradation of SP is sufficient to limit SP-induced bronchoconstriction even in the presence of specific NEP inhibition.  相似文献   

3.
We studied the effects of the neutral endopeptidase (NEP) inhibitor thiorphan (1.7 mg/kg iv) and the angiotensin-converting enzyme (ACE) inhibitor captopril (5.7 mg/kg iv) on airway responses to rapid intravenous infusions of neurokinin A (NKA) and neurokinin B (NKB) in anesthetized, mechanically ventilated guinea pigs. The dose of NKA required to decrease pulmonary conductance to 50% of its base-line value (ED50GL) was fivefold less (P less than 0.0001) in animals treated with thiorphan compared with controls. NKA1-8, a product resulting from cleavage of NKA by NEP, had no bronchoconstrictor activity. Similar results were obtained by using NKB as the bronchoconstricting agent. Captopril had no significant effect on airway responses to NKA or NKB. In contrast, both thiorphan and captopril decrease the ED50GL for substance P (SP). We also compared the relative bronchoconstrictor potency of NKA, NKB, and SP. In control animals, the rank order of ED50GL values was NKA much less than NKB = SP. NKA also caused a more prolonged bronchoconstriction than SP or NKB. Thiorphan had no effect on the rank order of bronchoconstrictor potency, but in animals treated with captopril, the rank order of ED50GL values was altered to NKA less than SP less than NKB. These results suggest that degradation of NKA and NKB by NEP but not by ACE is an important determinant of the bronchoconstriction induced by these peptides. The degradation by ACE of SP but not NKA or NKB influences the observed relative potency of the three tachykinins as bronchoactive agents.  相似文献   

4.
To study the role of neutral endopeptidase (NEP) on endothelin-1-induced contraction of the airway smooth muscle, we examined the contractile effect of endothelin-1 in the isolated guinea pig trachea and human bronchus in the presence or absence of NEP inhibitor phosphoramidon. After incubation with phosphoramidon (10(-8) to 10(-5) M), we added endothelin-1 cumulatively from 10(-11) to 10(-7) M to the airway tissues in organ baths. Phosphoramidon significantly potentiated the endothelin-1-induced contraction in a concentration-dependent fashion in both guinea pig trachea and human bronchus, and it shifted the concentration-response curves to the left. Because NEP is known to cleave tachykinins, we next studied whether endothelin-1 contracts airway tissues by releasing endogenous tachykinins from bronchial C-fibers. After incubation with phosphoramidon (10(-5) M), we added endothelin-1 cumulatively from 10(-11) to 10(-7) M to the tissues that were treated with capsaicin to deplete the tachykinins. Phosphoramidon significantly potentiated the endothelin-1-induced contraction in the capsaicin-treated tissues, suggesting that endothelin-1 causes the contraction, at least in part, without releasing tachykinins. In contrast to the effect of phosphoramidon, captopril (an angiotensin-converting enzyme inhibitor), leupeptin (a serine protease inhibitor), and bestatin (an aminopeptidase inhibitor) did not modulate the effect of endothelin-1-induced contraction in both guinea pig trachea and human bronchus. From these results, we conclude that NEP plays an important role in regulating endothelin-1-induced contraction in the guinea pig trachea and human bronchus.  相似文献   

5.
Neprilysin (neutral endopeptidase, enkephalinase, CALLA, CD10, NEP) is a regulatory Zn metallopeptidase expressed in the brush border membranes of the kidney and has been found in porcine chondrocytes and rat articular cartilage as well as other cell types and tissues. Although its function in cartilage is not currently known, previous observations of high levels of NEP enzymatic activity in the synovial fluid of arthritic patients and on the chondrocyte membranes of human osteoarthritic cartilage have led to the hypothesis that NEP is involved in the inflammation or degradation pathways in articular cartilage. Our study localized endogenous NEP to the membranes of mature bovine articular chondrocytes in a tissue explant model and demonstrated that the addition of soluble recombinant NEP (sNEP) to the culture medium of bovine cartilage explants leads to the degradation of aggrecan through the action of aggrecanase. A 6-day exposure to sNEP was necessary to initiate the degradation, suggesting that the chondrocytes were responding in a delayed manner to an altered composition of regulatory peptides. This NEP-induced degradation was completely inhibited by the NEP inhibitors thiorphan and phosphoramidon. These results suggest that NEP is present as a transmembrane enzyme on articular chondrocytes where it can cleave regulatory peptides and lead to the induction of aggrecanase.  相似文献   

6.
Inhibition of bovine lung and testicular angiotensin-converting enzyme (ACE) by some well-known ACE inhibitors (lisinopril, captopril, enalapril), new substances (Nalpha-carboxyalkyl dipeptides PP-09, PP-35, and PP-36), and phosphoramidon was investigated using Cbz-Phe-His-Leu and FA-Phe-Phe-Arg (C-terminal analogs of angiotensin I and bradykinin, respectively) as the substrates. The somatic (two domains) and testicular (single domain) isoenzymes demonstrated different kinetic parameters for hydrolysis of these substrates. All of the inhibitors were competitive inhibitors of both ACE isoforms, and the Ki values were substrate-independent. The relative potencies of the inhibitors for both enzymes were: lisinopril > captopril > PP-09 > enalapril > PP-36 > PP-35 > phosphoramidon. The inhibition efficiency of PP-09 was comparable with those of the well-known ACE inhibitors. Captopril was more effectively bound to the somatic ACE (Ki = 0.5 nM) than to the testicular isoform (Ki = 6.5 nM).  相似文献   

7.
Vasopeptidase inhibitors possess dual inhibitory actions on neutral endopeptidase (NEP) and angiotensin-converting enzyme (ACE) and have beneficial effects on cardiac remodeling. However, the contribution of NEP inhibition to their effects is not yet fully understood. To address the role of cardiac NEP inhibition in the anti-remodeling effects of a vasopeptidase inhibitor, we examined the effects of omapatrilat on the development of cardiac remodeling in rats with left coronary artery ligation (CAL) and those on collagen synthesis in cultured fibroblast cells. In vivo treatment with omapatrilat (30 mg/kg/day for 5 weeks) inhibited cardiac NEP activity in rats with CAL, which was associated with a suppression of both cardiac hypertrophy and collagen deposition. In cultured cardiac fibroblasts, omapatrilat (10–7~10–5 M) inhibited NEP activity and augmented the ANP-induced decrease in [3H]-proline incorporation. ONO-BB, an active metabolite of the NEP selective inhibitor ONO-9902, also augmented the ANP-induced response, whereas captopril, an ACE inhibitor, did not. The angiotensin I-induced increase in [3H]-proline incorporation was prevented by omapatrilat and captopril, but not by ONO-BB. The results suggest that vasopeptidase inhibitor suppressed cardiac remodeling in the setting of chronic heart failure, possibly acting through the direct inhibition of cardiac NEP. Vasopeptidase inhibitors may have therapeutic advantages over the classical ACE and NEP inhibitors alone with respect to the regression of cardiac fibrosis.  相似文献   

8.
We studied the effects of neutral endopeptidase (NEP) and angiotensin-converting enzyme (ACE) inhibition on the airway responses and the recovery of endogenously released substance P- and neurokinin A-like immunoreactivities (SP-LI and NKA-LI) after tracheal injection of capsaicin in isolated guinea pig lungs superfused through the trachea. Capsaicin in doses from 10(-10) to 10(-7) mol induced a dose-dependent increase in airway opening pressure and release of SP-LI and NKA-LI. Airway opening pressure changes and the recovery of SP-LI and NKA-LI were significantly greater in lungs superfused with the NEP inhibitor SCH 32615 than in control lungs. ACE inhibition with captopril did not increase the mechanical response or the recovery of SP-LI compared with lungs not receiving captopril. In lungs from guinea pigs pretreated with high doses of capsaicin 7-10 days before study, a regimen designed to deplete endogenous tachykinins, there was a significant decrease in the content and release of NKA-LI and SP-LI. There were no detectable airway effects of acute capsaicin infusion even after doses of 10(-5) mol. Because NEP is important in modulating the airway effects of endogenously released tachykinins after tracheal infusion of capsaicin, but ACE is not, it seems likely that tracheal administration of capsaicin releases tachykinins from epithelial rather than endothelial loci.  相似文献   

9.
The role of angiotensin converting enzyme (ACE, peptidyl dipeptidase A) in metamorphic- and reproductive-related events in the Egyptian cotton leafworm, Spodoptera littoralis (Lepidoptera, Noctuidae) was studied by using the selective ACE inhibitor captopril. Although oral administration of captopril had no effect on larval growth, topical administration to new pupae resulted in a large decrease of successful adult formation. Oviposition and overall appearance of adults emerging from treated larvae did not differ significantly from those emerging from non-treated larvae. In contrast, topical or oral administration of captopril to newly emerged adults caused a reduction in oviposition. By evaluating the effect of captopril on ecdysteroid titers and trypsin activity, we revealed an additional physiological role for ACE. Captopril exerted an inhibitory effect on ecdysteroid levels in female but not in male adults. Larvae fed a diet containing captopril exhibited increased trypsin activity. A similar captopril-induced increase in trypsin activity was observed in female adults. In male adults, however, captopril elicited reduced levels of trypsin activity. Our results suggest that captopril downregulates oviposition by two independent pathways, one through ecdysteroid biosynthesis regulation, and the other through regulation of trypsin activity. Apparently, fecundity is influenced by a complex interaction of ACE, trypsin activity, and ecdysteroid levels.  相似文献   

10.
The present study describes a differential inhibitory effect of captopril and [Sar1 Ala8]angiotensin II (saralasin) on the neurogenic vasoconstriction in pithed normotensive rats. In pithed normotensive rats with intact kidneys captopril more profoundly inhibited the vasopressor response to spinal stimulation than observed for saralasin. Bilateral nephrectomy also diminished the hypertensive response to spinal stimulation. After bilateral nephrectomy, 1 h previously, captopril but not saralasin diminished the hypertensive response to spinal stimulation. After bilateral nephrectomy, 18-24 h previously, captopril did not produce an additional reduction of the vasopressor response to spinal stimulation. In contrast, saralasin significantly potentiated the neurogenic vasoconstriction. The results suggest that both captopril and saralasin diminish the hypertensive response to spinal stimulation by producing dilatation of vascular smooth muscle in pithed normotensive rats. Apart from this common mechanism, a differential effect of captopril and saralasin on the neurogenic vasoconstriction can be observed. In contrast to saralasin, captopril may depress the neurogenic vasoconstriction in pithed normotensive rats by blocking the sympathofacilitatory action induced by subpressor levels of angiotensin II (AII). In pithed normotensive rats, saralasin may mimic the sympathofacilitatory action of subpressor AII.  相似文献   

11.
Modulation of cutaneous inflammation by angiotensin-converting enzyme   总被引:2,自引:0,他引:2  
Cutaneous neurogenic inflammation is a complex biological response of the host immune system to noxious stimuli. Present evidence suggests that zinc metalloproteases may play an important role in the regulation of neurogenic inflammation by controlling the local availability of neuropeptides, such as substance P (SP), that are capable of initiating or amplifying cutaneous inflammation after release from sensory nerves. To address the hypothesis that the dipeptidyl carboxypeptidase angiotensin-converting enzyme (ACE) is capable of modulating skin inflammation, we have analyzed murine allergic contact dermatitis (ACD) and irritant contact dermatitis (ICD) using wild-type C57BL/6J (ACE(+/+)) or genetically engineered mice with a heterozygous deletion of somatic ACE (ACE(+/-)). In 2,4-dinitro-1-fluorobenzene-sensitized ACE(+/-) mice, ACD was significantly augmented in comparison to ACE(+/+) controls as determined by the degree of ear swelling after exposure to hapten. Likewise, systemic treatment of ACE(+/+) mice with the ACE inhibitor captopril before sensitization or elicitation of ACD significantly augmented the ACD response. In contrast, local damage and neuropeptide depletion of sensory nerves following capsaicin, injection of a bradykinin B(2), or a SP receptor antagonist before sensitization significantly inhibited the augmented effector phase of ACD in mice with functionally absent ACE. However, in contrast to ACD, the response to the irritant croton oil was not significantly altered in ACE(+/-) compared with ACE(+/+) mice. Thus, ACE by degrading bradykinin and SP significantly controls cutaneous inflammatory responses to allergens but not to irritants, which may explain the frequently observed exacerbation of inflammatory skin disease in patients under medication with ACE inhibitors.  相似文献   

12.
The effect of antigen challenge on the airway responses to substance P and on the epithelial neutral endopeptidase (NEP) activity was investigated in aerosol sensitized guinea-pigs. In vivo, bronchial responses to aerosolized substance P were similar to the responses observed in antigen-challenged guinea-pigs and in the control groups. In contrast, when the guinea-pigs were pretreated with the NEP inhibitor, phosphoramidon, a significant increase in the airway responses to substance P was observed after antigen challenge in vivo. However, in vitro, the contractile responses of the tracheal smooth muscle to substance P were similar between groups of guinea-pigs, in respect to the presence or absence of the epithelium and/or phosphoramidon. Histological studies showed an accumulation of eosinophils in the tracheal submucosa after antigen challenge and intact epithelial cells. These results show that in vivo bronchial hyperresponsiveness to substance P after antigen challenge in the guinea-pig is not associated with increased responses of the smooth muscle to exogenous SP in vitro. In addition, the results with phosphoramidon suggest that loss of NEP activity cannot account for the in vivo bronchial hyperresponsiveness to substance P presently observed.  相似文献   

13.
The goal of this study was to determine whether neutrophils that adhere to the vascular endothelium in association with neurogenic inflammation in the respiratory tract migrate out of the blood vessels or whether they detach and reenter the circulation. We also sought to determine whether the fate of the neutrophils is influenced by neutral endopeptidase (NEP), an enzyme that degrades the tachykinins that produce neurogenic inflammation. Neutrophils in the tracheal mucosa of anesthetized pathogen-free rats were examined 5 min or 4 h after neurogenic inflammation was produced by an injection of capsaicin (100 or 200 micrograms/kg iv). In whole mounts of these tracheae stained histochemically for myeloperoxidase, adherent intravascular neutrophils had a spherical or teardrop (regular) shape and migrating neutrophils had a polarized amoeboid (irregular) shape. The number of regular neutrophils in the tracheae was increased at both times, but the increase at 4 h was only half that present at 5 min. The reduction between 5 min and 4 h was not offset by an appreciable increase in the number of irregular neutrophils, unless NEP was inhibited by phosphoramidon. We interpret these results as indicating that the rapid adherence of neutrophils to the vascular endothelium after an injection of capsaicin is followed by a gradual reentry of the neutrophils into the circulation and comparatively little neutrophil migration. However, when the effect of the stimulus is increased and/or prolonged by inhibition of NEP, some of the adherent neutrophils migrate out of the vessels. Thus the activity of NEP can regulate both the magnitude of the neutrophil adherence and the fate of the adherent cells.  相似文献   

14.
The purpose of this study was to examine the effects of continuous angiotensin converting enzyme (ACE) blockade in stroke-prone spontaneously hypertensive rats (sp-SHR) on the renin-angiotensin system and on sympathetic activity. The pressor response to angiotensin II (AII) and norepinephrine (NE) were also examined after chronic blockade of ACE and compared to that of saline-treated controls. Captopril treatment had no effect on body weight. Serum ACE was significantly reduced on day 1; an effect that persisted through day 6 and day 10. Plasma renin activity (PRA) was elevated significantly on day 1 and remained at this high level throughout the 10 day observation period. Plasma NE was not altered by the chronic ACE blockade except on day 1, where there was a slight elevation of plasma NE in both groups. Pressor responses to AII and NE were not changed after chronic captopril treatment. It is observed that chronic inhibition of the renin-angiotensin system with captopril in sp-SHR resulted in a reduction of blood pressure, reduced serum ACE activity and elevated PRA. The constant plasma NE levels suggest that chronic inhibition of the renin-angiotensin system does not affect sympathetic activity. This study also indicates that long term inhibition of ACE does not alter pressor responses to either AII or NE.  相似文献   

15.
To determine the role of endogenous neutral endopeptidase (NEP) (also called enkephalinase, EC 3.4.24.11) in regulating neurotensin-induced airway contraction, we used phosphoramidon, a specific NEP inhibitor, in the guinea pig. In studies in vitro, neurotensin and the COOH-terminal fragment neurotensin-(8-13) contracted strips of bronchial smooth muscle in a concentration-dependent fashion (P less than 0.001). In contrast, the NH2-terminal fragment neurotensin-(1-11) and the COOH-terminal fragment neurotensin-(12-13), the main fragments of neurotensin hydrolysis by NEP, had no effect. Phosphoramidon (10(-5) M) did not change resting tension but shifted the concentration-response curves to neurotensin to lower concentrations (P less than 0.001), whereas inhibitors of kininase II, aminopeptidases, serine proteases, and carboxypeptidase N were without effect. Removing the epithelium increased the contractile response to neurotensin (P less than 0.001), and phosphoramidon further increased the response to neurotensin in these tissues (P less than 0.001). Similar results were obtained in studies in vivo using aerosolized neurotensin and phosphoramidon. These results suggest that endogenous NEP in the airways modulates the effects of neurotensin on airway smooth muscle contraction by inactivating the peptide.  相似文献   

16.
The coupling of the techniques, high-performance liquid chromatography (HPLC), orthogonal acceleration time-of-flight mass spectrometry (OATOF-MS) and inductively coupled plasma mass spectrometry (ICP-MS) provides a very powerful method for identifying and quantifying the products of bradykinin metabolism. In this study, we were able to identify the major metabolites of bradykinin degradation reported in the literature. In addition, a new bradykinin metabolite corresponding to bradykinin 5,9 fragment (BK-(5,9)-fragment) was identified as a product of neutral endopeptidase (NEP) activity. This finding establishes that NEP cleaves bradykinin simultaneously at the positions 4-5 and 7-8. We also demonstrate the equivalent participation of NEP and angiotensin-converting enzyme (ACE) within the rat lung tissue membranes (RLTM) in bradykinin degradation, suggesting its suitability as a model for the assay of dual ACE/NEP inhibitors. On the contrary, in rat kidney brush border membranes (KBBM), ACE is not significantly involved in bradykinin metabolism, with NEP being the major enzyme.  相似文献   

17.
M.F. Melzig  M. Janka 《Phytomedicine》2003,10(6-7):494-498
Green tea extract (EFLA85942) is able to induce specifically the neutral endopeptidase (NEP) activity and to inhibit the proliferation of SK-N-SH cells; the angiotensin-converting enzyme (ACE) activity is not influenced under the same conditions. The treatment of the cells with arabinosylcytosine and green tea extract results in a strong enhancement of cellular NEP activity whereas cellular ACE activity was not changed significantly, indicating a green tea extract-specific regulation of NEP expression. Because of its role in the degradation of amyloid beta peptides this enzyme induction of NEP by long term treatment with green tea extract may have a beneficial effect regarding the prevention of forming amyloid plaques.  相似文献   

18.
The aim of the present study was to assess the contribution of angiotensin I converting enzyme (ACE)and neutral endopeptidase (NEP) in the coronary degradation of bradykinin (BK) after left-ventricular hypertrophy following myocardial infarction (MI) in rats. Myocardial infarction was induced by left descendant coronary artery ligation, and the contribution of ACE and NEP in the degradation of exogenous BK after a single passage through the coronary bed was assessed at 2, 5, and 36 days post-MI. BK degradation rate (V(max)/Km) was found to be significantly lower in hearts at 36 days (3.30 +/- 0.28 min(-1)) compared with 2 days (4.39 +/- 0.32 min(-1)) for noninfarcted hearts, but this reduction was just above the statistical level of significance for post-MI hearts. In infarcted hearts, V(max)/Km was increased significantly 5 days post-MI (4.91 +/- 0.28 min(-1)) compared with the 2 and 36 day-groups (3.43 +/- 0.20 and 2.78 +/- 0.16 min(-1), respectively). The difference between noninfarcted and MI was significant only 2 days post-MI. Treatment with the vasopeptidase inhibitor, omapatrilat, showed that the relative contribution of ACE and NEP combined increased over time in infarcted hearts and became significantly higher 36 versus 2 days post-MI. Finally, the treatment with an ACE inhibitor (enalaprilat) and a NEP inhibitor (retrothiorphan) in the 36-day infarcted and noninfarcted hearts showed that the relative contribution of ACE in infarcted hearts was comparable with that of noninfarcted hearts, whereas the relative contribution of NEP was increased significantly in infarcted hearts. In conclusion, experimental MI in rats induces complex changes in the metabolism of exogenous BK. The changes resulted in an increased relative contribution of NEP 36 days after infarction.  相似文献   

19.
To identify the amyloid beta peptide (Abeta) 1-42-degrading enzyme whose activity is inhibited by thiorphan and phosphoramidon in vivo, we searched for neprilysin (NEP) homologues and cloned neprilysin-like peptidase (NEPLP) alpha, NEPLP beta, and NEPLP gamma cDNAs. We expressed NEP, phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PEX), NEPLPs, and damage-induced neuronal endopeptidase (DINE) in 293 cells as 95- to 125-kDa proteins and found that the enzymatic activities of PEX, NEPLP alpha, and NEPLP beta, as well as those of NEP and DINE, were sensitive to thiorphan and phosphoramidon. Among the peptidases tested, NEP degraded both synthetic and cell-secreted Abeta1-40 and Abeta1-42 most rapidly and efficiently. PEX degraded cold Abeta1-40 and NEPLP alpha degraded both cold Abeta1-40 and Abeta1-42, although the rates and the extents of the digestion were slower and less efficient than those exhibited by NEP. These data suggest that, among the endopeptidases whose activities are sensitive to thiorphan and phosphoramidon, NEP is the most potent Abeta-degrading enzyme in vivo. Therefore, manipulating the activity of NEP would be a useful approach in regulating Abeta levels in the brain.  相似文献   

20.
Skidgel RA  Erdös EG 《Peptides》2004,25(3):521-525
Our investigations started when synthetic bradykinin became available and we could characterize two enzymes that cleaved it: kininase I or plasma carboxypeptidase N and kininase II, a peptidyl dipeptide hydrolase that we later found to be identical with the angiotensin I converting enzyme (ACE). When we noticed that ACE can cleave peptides without a free C-terminal carboxyl group (e.g., with a C-terminal nitrobenzylamine), we investigated inactivation of substance P, which has a C-terminal Met(11)-NH(2). The studies were extended to the hydrolysis of the neuropeptide, neurotensin and to compare hydrolysis of the same peptides by neprilysin (neutral endopeptidase 24.11, CD10, NEP). Our publication in 1984 dealt with ACE and NEP purified to homogeneity from human kidney. NEP cleaved substance P (SP) at Gln(6)-Phe(7), Phe(7)[see text]-Phe(8), and Gly(9)-Leu(10) and neurotensin (NT) at Pro(10)-Tyr(11) and Tyr(11)-Ile(12). Purified ACE also rapidly inactivated SP as measured in bioassay. HPLC analysis showed that ACE cleaved SP at Phe(8)-Gly(9) and Gly(9)-Leu(10) to release C-terminal tri- and dipeptide (ratio = 4:1). The hydrolysis was Cl(-) dependent and inhibited by captopril. ACE released only dipeptide from SP free acid. ACE hydrolyzed NT at Tyr(11)-Ile(12) to release Ile(12)-Leu(13). Then peptide substrates were used to inhibit ACE hydrolyzing Fa-Phe-Gly-Gly and NEP cleaving Leu(5)-enkephalin. The K(i) values in microM were as follows: for ACE, bradykinin = 0.4, angiotensin I = 4, SP = 25, SP free acid = 2, NT = 14, and Met(5)-enkephalin = 450, and for NEP, bradykinin = 162, angiotensin I = 36, SP = 190, NT = 39, Met(5)-enkephalin = 22. These studies showed that ACE and NEP, two enzymes widely distributed in the body, are involved in the metabolism of SP and NT. Below we briefly survey how NEP and ACE in two decades have gained the reputation as very important factors in health and disease. This is due to the discovery of more endogenous substrates of the enzymes and to the very broad and beneficial therapeutic applications of ACE inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号