首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here we describe the efficient synthesis of two oligosaccharide moieties of human glycosphingolipids, globotetraose (GalNAcβ1→3Galα1→4Galβ1→4Glc) and isoglobotetraose (GalNAcβ1→3Galα1→3Galβ1→4Glc), with in situ enzymatic regeneration of UDP-N-acetylgalactosamine (UDP-GalNAc). We demonstrate that the recombinant β-1,3-N-acetylgalactosaminyltransferase from Haemophilus influenzae strain Rd can transfer N-acetylgalactosamine to a wide range of acceptor substrates with a terminal galactose residue. The donor substrate UDP-GalNAc can be regenerated by a six-enzyme reaction cycle consisting of phosphoglucosamine mutase, UDP-N-acetylglucosamine pyrophosphorylase, phosphate acetyltransferase, pyruvate kinase, and inorganic pyrophosphatase from Escherichia coli, as well as UDP-N-acetylglucosamine C4 epimerase from Plesiomonas shigelloides. All these enzymes were overexpressed in E. coli with six-histidine tags and were purified by one-step nickel-nitrilotriacetic acid affinity chromatography. Multiple-enzyme synthesis of globotetraose or isoglobotetraose with the purified enzymes was achieved with relatively high yields.  相似文献   

2.
Hyaluronan (HA) is a glycosaminoglycan present in most tissue microenvironments that can modulate many cell behaviors, including proliferation, migration, and adhesive proprieties. In contrast with other glycosaminoglycans, which are synthesized in the Golgi, HA is synthesized at the plasma membrane by one or more of the three HA synthases (HAS1–3), which use cytoplasmic UDP-glucuronic acid and UDP-N-acetylglucosamine as substrates. Previous studies revealed the importance of UDP-sugars for regulating HA synthesis. Therefore, we analyzed the effect of UDP-GlcNAc availability and protein glycosylation with O-linked N-acetylglucosamine (O-GlcNAcylation) on HA and chondroitin sulfate synthesis in primary human aortic smooth muscle cells. Glucosamine treatment, which increases UDP-GlcNAc availability and protein O-GlcNAcylation, increased synthesis of both HA and chondroitin sulfate. However, increasing O-GlcNAcylation by stimulation with O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate without a concomitant increase of UDP-GlcNAc increased only HA synthesis. We found that HAS2, the main synthase in aortic smooth muscle cells, can be O-GlcNAcylated on serine 221, which strongly increased its activity and its stability (t½ >5 h versus ∼17 min without O-GlcNAcylation). S221A mutation prevented HAS2 O-GlcNAcylation, which maintained the rapid turnover rate even in the presence of GlcN and increased UDP-GlcNAc. These findings could explain the elevated matrix HA observed in diabetic vessels that, in turn, could mediate cell dedifferentiation processes critical in vascular pathologies.  相似文献   

3.
Mammals have three homologous genes encoding proteins with hyaluronan synthase activity (Has1–3), all producing an identical polymer from UDP-N-acetylglucosamine and UDP-glucuronic acid. To compare the properties of these isoenzymes, COS-1 cells, with minor endogenous hyaluronan synthesis, were transfected with human Has1–3 isoenzymes. HAS1 was almost unable to secrete hyaluronan or form a hyaluronan coat, in contrast to HAS2 and HAS3. This failure of HAS1 to synthesize hyaluronan was compensated by increasing the cellular content of UDP-N-acetyl glucosamine by ∼10-fold with 1 mm glucosamine in the growth medium. Hyaluronan synthesis driven by HAS2 was less affected by glucosamine addition, and HAS3 was not affected at all. Glucose-free medium, leading to depletion of the UDP-sugars, markedly reduced hyaluronan synthesis by all HAS isoenzymes while raising its concentration from 5 to 25 mm had a moderate stimulatory effect. The results indicate that HAS1 is almost inactive in cells with low UDP-sugar supply, HAS2 activity increases with UDP-sugars, and HAS3 produces hyaluronan at high speed even with minimum substrate content. Transfected Has2 and particularly Has3 consumed enough UDP-sugars to reduce their content in COS-1 cells. Comparison of different human cell types revealed ∼50-fold differences in the content of UDP-N-acetylhexosamines and UDP-glucuronic acid, correlating with the expression level of Has1, suggesting cellular coordination between Has1 expression and the content of UDP-sugars.  相似文献   

4.
We have identified an operon and characterized the functions of two genes from the severe food-poisoning bacterium, Bacillus cereus subsp. cytotoxis NVH 391-98, that are involved in the synthesis of a unique UDP-sugar, UDP-2-acetamido-2-deoxyxylose (UDP-N-acetyl-xylosamine, UDP-XylNAc). UGlcNAcDH encodes a UDP-N-acetyl-glucosamine 6-dehydrogenase, converting UDP-N-acetylglucosamine (UDP-GlcNAc) to UDP-N-acetyl-glucosaminuronic acid (UDP-GlcNAcA). The second gene in the operon, UXNAcS, encodes a distinct decarboxylase not previously described in the literature, which catalyzes the formation of UDP-XylNAc from UDP-GlcNAcA in the presence of exogenous NAD+. UXNAcS is specific and cannot utilize UDP-glucuronic acid and UDP-galacturonic acid as substrates. UXNAcS is active as a dimer with catalytic efficiency of 7 mm−1 s−1. The activity of UXNAcS is completely abolished by NADH but unaffected by UDP-xylose. A real-time NMR-based assay showed unambiguously the dual enzymatic conversions of UDP-GlcNAc to UDP-GlcNAcA and subsequently to UDP-XylNAc. From the analyses of all publicly available sequenced genomes, it appears that UXNAcS is restricted to pathogenic Bacillus species, including Bacillus anthracis and Bacillus thuringiensis. The identification of UXNAcS provides insight into the formation of UDP-XylNAc. Understanding the metabolic pathways involved in the utilization of this amino-sugar may allow the development of drugs to combat and eradicate the disease.  相似文献   

5.
Sialic acids are essential components of membrane glycoconjugates. They are responsible for the interaction, structure, and functionality of all deuterostome cells and have major functions in cellular processes in health and diseases. The key enzyme of the biosynthesis of sialic acid is the bifunctional UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase that transforms UDP-N-acetylglucosamine to N-acetylmannosamine (ManNAc) followed by its phosphorylation to ManNAc 6-phosphate and has a direct impact on the sialylation of cell surface components. Here, we present the crystal structures of the human N-acetylmannosamine kinase (MNK) domain of UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase in complexes with ManNAc at 1.64 Å resolution, MNK·ManNAc·ADP (1.82 Å) and MNK·ManNAc 6-phosphate·ADP (2.10 Å). Our findings offer detailed insights in the active center of MNK and serve as a structural basis to design inhibitors. We synthesized a novel inhibitor, 6-O-acetyl-ManNAc, which is more potent than those previously tested. Specific inhibitors of sialic acid biosynthesis may serve to further study biological functions of sialic acid.  相似文献   

6.
Neoplastic mast cells of mice (including long-established and newly derived lines) were grown in large-volume suspension cultures to provide enough cells for preparation of microsomal fractions. Microsomal preparations from P815Y and P815S cells synthesized 14C-labelled glycosaminoglycan when incubated with UDP-[14C]glucuronic acid and UDP-N-acetylgalactosamine. No significant amount of 14C-labelled glycosaminoglycan was formed when UDP-N-acetylglucosamine was substituted for the UDP-N-acetylgalactosamine. Microsomal preparations from X163 cells synthesized 14C-labelled glycosaminoglycan when incubated with UDP-[14C]glucuronic acid and either UDP-N-acetylgalactosamine or UDP-N-acetylglucosamine. The 14C-labelled glycosaminoglycan formed in the presence of UDP-N-acetylgalactosamine was degradable by testicular hyaluronidase, indicating that it was chondroitin-like. The 14C-labelled glycosaminoglycan formed in the presence of UDP-N-acetylglucosamine was not degradable by testicular hyaluronidase. Microsomal preparations from P815S cells were tested for sulphating activity by incubation with adenosine 3′-phosphate 5′-sulphatophosphate, as well as UDP-[14C]glucuronic acid, and UDP-N-acetylgalactosamine. The resulting newly synthesized polysaccharide was shown by chondroitinase ABC digestion to be 70% chondroitin 4-sulphate and 30% chondroitin. The molecular size of this newly synthesized glycosaminoglycan was determined by gel filtration to be larger than 40000 mol.wt. In general, the glycosaminoglycan-synthesizing ability of the microsomal preparations appeared to reflect glycosaminoglycan synthesis by the intact cells.  相似文献   

7.
An enzyme that conjugates the 16α-hydroxyl group of oestriol with glucuronic acid was found in the cytosol fraction of human liver. The enzymic activity could not be sedimented when the cytosol fraction was centrifuged at 158000gav. for 120min. The oestriol 16α-glucuronyltransferase was purified 100-fold by 0–30% saturation of the cytosol fraction with ammonium sulphate followed by filtration of the precipitate through Sephadex G-200. The activity was eluted at the void volume. The product of the reaction, oestriol 16α-monoglucuronide, was identified by paper chromatography and by crystallization of radioactive product to constant specific radioactivity. The optimum temperature was 37°C, and the activation energy was calculated to be 11.1kcal/mol. The apparent Michaelis–Menten constants for oestriol and UDP-glucuronic acid were 13.3 and 100μm respectively. Cu2+, Zn2+ and Hg2+ inhibited, whereas Mg2+, Mn2+ and Fe2+ stimulated the enzyme. Substrate-specificity studies indicated that the amount of oestradiol-17β, oestradiol-17α and oestrone conjugated was not more than about 5% of that found for oestriol. Oestriol 16α-monoglucuronide, a product of the reaction, did not inhibit the 16α-oestriol glucuronyltransferase; in contrast, UDP, another product of the reaction, inhibited the enzyme competitively with respect to UDP-glucuronic acid as the substrate, and non-competitively with respect to oestriol as the substrate. ATP and UDP-N-acetylglucosamine did not affect the oestriol 16α-glucuronyltransferase. 17-Epioestriol acted as a competitive inhibitor and 16-epioestriol as a non-competitive inhibitor of the glucuronidation of oestriol. 5α-Pregnane-3α,20α-diol also inhibited the enzyme non-competitively. It is most likely that the oestriol 16α-glucuronyltransferase described here is bound to the membranes of the endoplasmic reticulum.  相似文献   

8.
A soluble fraction of rat liver converts glucosamine and N-acetylglucosamine in the presence of ATP and UTP to N-acetylneuraminic acid. This system, when supplemented with CTP, forms CMP-N-acetylneuraminic acid in high yield. Nicotinamide was found to enhance the synthesis of UDP-N-acetylglucosamine and N-acetylneuraminic acid. Kinetic analysis reveals N-acetylglucosamine 6-phosphate, UDP-N-acetylglucosamine, N-acetylmannosamine, N-acetylmannosamine 6-phosphate and N-acetylneuraminic acid 9-phosphate as intermediates. Under certain experimental conditions, however, an epimerisation of N-acetylglucosamine to N-acetylmannosamine was seen.  相似文献   

9.
The metabolism of d-galactosamine and N-acetyl-d-galactosamine in rat liver   总被引:3,自引:3,他引:0  
d-[1-14C]Galactosamine appears to be utilized mainly by the pathway of galactose metabolism in rat liver, as evidenced by the products isolated from the acid-soluble fraction of perfused rat liver. These products were eluted in the following order from a Dowex 1 (formate form) column and were characterized as galactosamine 1-phosphate, sialic acid, UDP-glucosamine, UDP-galactosamine, N-acetylgalactosamine 1-phosphate, N-acetylglucosamine 6-phosphate, UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine and an unidentified galactosamine-containing compound. In addition, [1-14C]glucosamine was found in the glycogen, an incorporation previously shown to result from the substitution of UDP-glucosamine for UDP-glucose in the glycogen synthetase reaction. Analysis of the [1-14C]glucosamine-containing disaccharides released from glycogen by β-amylase provided additional evidence that they consist of a mixture of glucose and glucosamine in a 1:1 ratio, but with glucose predominating on the reducing end. UDP-N-acetylgalactosamine was shown to result from the reaction of UTP with N-acetylgalactosamine 1-phosphate in the presence of a rat liver extract.  相似文献   

10.
The monomer composition of the exopolysaccharides (EPS) produced by Streptococcus thermophilus LY03 and S. thermophilus Sfi20 were evaluated by high-pressure liquid chromatography with amperometric detection and nuclear magnetic resonance spectroscopy. Both strains produced the same EPS composed of galactose, glucose, and N-acetylgalactosamine. Further, it was demonstrated that the activity of the precursor-producing enzyme UDP-N-acetylglucosamine 4-epimerase, converting UDP-N-acetylglucosamine into UDP-N-acetylgalactosamine, is responsible for the presence of N-acetylgalactosamine in the EPS repeating units of both strains. The activity of UDP-N-acetylglucosamine 4-epimerase was higher in both S. thermophilus strains than in a non-EPS-producing control strain. However, the level of this activity was not correlated with EPS yields, a result independent of the carbohydrate source applied in the fermentation process. On the other hand, both the amounts of EPS and the carbohydrate consumption rates were influenced by the type of carbohydrate source used during S. thermophilus Sfi20 fermentations. A correlation between activities of the enzymes α-phosphoglucomutase, UDP-glucose pyrophosphorylase, and UDP-galactose 4-epimerase and EPS yields was seen. These experiments confirm earlier observed results for S. thermophilus LY03, although S. thermophilus Sfi20 preferentially consumed glucose for EPS production instead of lactose in contrast to the former strain.  相似文献   

11.
1. Glucosamine 6-phosphate deaminase [2-amino-2-deoxy-d-glucose 6-phosphate ketol-isomerase (deaminating), EC 5.3.1.10] of Bacillus subtilis has been partially purified. Its Km is 3·0mm. 2. Extracts of B. subtilis contain N-acetylglucosamine 6-phosphate deacetylase (Km 1·4mm), glucosamine 1-phosphate acetylase and amino sugar kinases (EC 2.7.1.8 and 2.7.1.9). 3. Glucosamine 6-phosphate synthetase (l-glutamine–d-fructose 6-phosphate aminotransferase, EC 2.6.1.16) is repressed by growth of B. subtilis in the presence of glucosamine, N-acetylglucosamine, N-propionylglucosamine or N-formylglucosamine. Glucosamine 6-phosphate deaminase and N-acetylglucosamine 6-phosphate deacetylase are induced by N-acetylglucosamine. Amino sugar kinases are induced by glucose, glucosamine and N-acetylglucosamine. The synthesis of glucosamine 1-phosphate acetylase is unaffected by amino sugars. 4. Glucose in the growth medium prevents the induction of glucosamine 6-phosphate deaminase and of N-acetylglucosamine 6-phosphate deacetylase caused by N-acetylglucosamine; glucose also alleviates the repression of glucosamine 6-phosphate synthetase caused by amino sugars. 5. Glucosamine 6-phosphate deaminase increases in bacteria incubated beyond the exponential phase of growth. This increase is prevented by glucose.  相似文献   

12.
The metabolism of [2-14C]indole in the rat   总被引:3,自引:1,他引:2  
1. [2-14C]Indole has been synthesized from [14C]formate and o-toluidine via N[14C]-formyltoluidine. 2. When fed to rats, the 14C of [14C]indole (dose 70–80mg./kg. body wt.) is fairly rapidly excreted, and in 2 days an average of 81% appears in the urine, 11% in the faeces and 2·4% as carbon dioxide in the expired air. 3. Radioactivity is excreted in the urine as indoxyl sulphate (50% of the dose), indoxyl glucuronide (11%), oxindole (1·4%), isatin (5·8%), 5-hydroxyoxindole conjugates (3·1%), N-formylanthranilic acid (0·5%) and unchanged indole (0·07%). The faeces contain indoxyl sulphate (0·4% of the dose) and indole (0·2%), but the major metabolites have not been identified. 4. Fed to rats with biliary cannulae an average of 5·6% of a dose of [14C]indole (20–60mg./kg. body wt.) is excreted in the bile in 2 days. Radioactivity is present as indoxyl sulphate (0·8% dose) and 5-hydroxyoxindole conjugates (0·6%). 5. Rats further metabolize indoxyl into N-formylanthranilic acid and anthranilic acid, and oxindole into 5-hydroxyoxindole. 6. With rat-liver microsomes plus supernatant under aerobic conditions, indole gives indoxyl, oxindole, possibly isatin, N-formylanthranilic acid and anthranilic acid, but under anaerobic conditions gives only oxindole. Similarly, under aerobic conditions, oxindole gives 5-hydroxyoxindole, anthranilic acid and o-aminophenylacetic acid. 7. Indole is metabolized by two pathways, one via indoxyl to isatin, N-formylanthranilic acid and anthranilic acid, and the other via oxindole to 5-hydroxyoxindole and possibly to o-aminophenylacetic and anthranilic acid. 8. The following new compounds are described: 4-hydroxy-2-nitrophenylacetic acid, 3-, 4- and 5-benzyloxy-2-nitrophenylacetic acid, 5- and 7-hydroxyoxindole and 5-aminoacridine indoxyl sulphate.  相似文献   

13.
The incorporation of labelled amino sugars by Bacillus subtilis   总被引:1,自引:1,他引:0  
1. Glucosamine 6-phosphate deaminase [2-amino-2-deoxy-d-glucose 6-phosphate ketol-isomerase (deaminating), EC 5.3.1.10] of Bacillus subtilis has been partially purified. Its Km is 3·0mm. 2. Extracts of B. subtilis contain N-acetylglucosamine 6-phosphate deacetylase (Km 1·4mm), glucosamine 1-phosphate acetylase and amino sugar kinases (EC 2.7.1.8 and 2.7.1.9). 3. Glucosamine 6-phosphate synthetase (l-glutamine–d-fructose 6-phosphate aminotransferase, EC 2.6.1.16) is repressed by growth of B. subtilis in the presence of glucosamine, N-acetylglucosamine, N-propionylglucosamine or N-formylglucosamine. Glucosamine 6-phosphate deaminase and N-acetylglucosamine 6-phosphate deacetylase are induced by N-acetylglucosamine. Amino sugar kinases are induced by glucose, glucosamine and N-acetylglucosamine. The synthesis of glucosamine 1-phosphate acetylase is unaffected by amino sugars. 4. Glucose in the growth medium prevents the induction of glucosamine 6-phosphate deaminase and of N-acetylglucosamine 6-phosphate deacetylase caused by N-acetylglucosamine; glucose also alleviates the repression of glucosamine 6-phosphate synthetase caused by amino sugars. 5. Glucosamine 6-phosphate deaminase increases in bacteria incubated beyond the exponential phase of growth. This increase is prevented by glucose.  相似文献   

14.
A complete procedure for the synthesis of 1-14C-glucosamine-labeled UDP-N-acetylglucosamine is described. Glucosamine is first phosphorylated with ATP and hexokinase to form glucosamine 6-phosphate. This is N-acetylated with acetic anhydride, and the product is converted to UDP-N-acetylglucosamine by incubation with a crude yeast extract. The sugar nucleotide is isolated from the incubation mixture by paper electrophoresis, and purified by paper chromatography.  相似文献   

15.

Background

Protein turnover in skeletal muscle tissue is highly responsive to nutrient intake in healthy adults.

Objective

To provide a comprehensive overview of post-prandial protein handling, ranging from dietary protein digestion and amino acid absorption, the uptake of dietary protein derived amino acids over the leg, the post-prandial stimulation of muscle protein synthesis rates, to the incorporation of dietary protein derived amino acids in de novo muscle protein.

Design

12 healthy young males ingested 20 g intrinsically [1-13C]-phenylalanine labeled protein. In addition, primed continuous L-[ring-2H5]-phenylalanine, L-[ring-2H2]-tyrosine, and L-[1-13C]-leucine infusions were applied, with frequent collection of arterial and venous blood samples, and muscle biopsies throughout a 5 h post-prandial period. Dietary protein digestion, amino acid absorption, splanchnic amino acid extraction, amino acid uptake over the leg, and subsequent muscle protein synthesis were measured within a single in vivo human experiment.

Results

55.3±2.7% of the protein-derived phenylalanine was released in the circulation during the 5 h post-prandial period. The post-prandial rise in plasma essential amino acid availability improved leg muscle protein balance (from -291±72 to 103±66 μM·min-1·100 mL leg volume-1; P<0.001). Muscle protein synthesis rates increased significantly following protein ingestion (0.029±0.002 vs 0.044±0.004%·h-1 based upon the muscle protein bound L-[ring-2H5]-phenylalanine enrichments (P<0.01)), with substantial incorporation of dietary protein derived L-[1-13C]-phenylalanine into de novo muscle protein (from 0 to 0.0201±0.0025 MPE).

Conclusion

Ingestion of a single meal-like amount of protein allows ~55% of the protein derived amino acids to become available in the circulation, thereby improving whole-body and leg protein balance. About 20% of the dietary protein derived amino acids released in the circulation are taken up in skeletal muscle tissue following protein ingestion, thereby stimulating muscle protein synthesis rates and providing precursors for de novo muscle protein synthesis.

Trial Registration

trialregister.nl 3638  相似文献   

16.
We studied O-linked β-N-acetylglucosamine (O-GlcNAc) modification of contractile proteins in human heart using SDS-PAGE and three detection methods: specific enzymatic conjugation of O-GlcNAc with UDP-N-azidoacetylgalactosamine (UDP-GalNAz) that is then linked to a tetramethylrhodamine fluorescent tag and CTD110.6 and RL2 monoclonal antibodies to O-GlcNAc. All three methods showed that O-GlcNAc modification was predominantly in a group of bands ∼90 kDa that did not correspond to any of the major myofibrillar proteins. MALDI-MS/MS identified the 90-kDa band as the protein ZASP (Z-band alternatively spliced PDZ motif protein), a minor component of the Z-disc (about 1 per 400 α-actinin) important for myofibrillar development and mechanotransduction. This was confirmed by the co-localization of O-GlcNAc and ZASP in Western blotting and by immunofluorescence microscopy. O-GlcNAcylation of ZASP increased in diseased heart, being 49 ± 5% of all O-GlcNAc in donor, 68 ± 9% in end-stage failing heart, and 76 ± 6% in myectomy muscle samples (donor versus myectomy p < 0.05). ZASP is only 22% of all O-GlcNAcylated proteins in mouse heart myofibrils.  相似文献   

17.
SLC35A3 is considered the main UDP-N-acetylglucosamine transporter (NGT) in mammals. Detailed analysis of NGT is restricted because mammalian mutant cells defective in this activity have not been isolated. Therefore, using the siRNA approach, we developed and characterized several NGT-deficient mammalian cell lines. CHO, CHO-Lec8, and HeLa cells deficient in NGT activity displayed a decrease in the amount of highly branched tri- and tetraantennary N-glycans, whereas monoantennary and diantennary ones remained unchanged or even were accumulated. Silencing the expression of NGT in Madin-Darby canine kidney II cells resulted in a dramatic decrease in the keratan sulfate content, whereas no changes in biosynthesis of heparan sulfate were observed. We also demonstrated for the first time close proximity between NGT and mannosyl (α-1,6-)-glycoprotein β-1,6-N-acetylglucosaminyltransferase (Mgat5) in the Golgi membrane. We conclude that NGT may be important for the biosynthesis of highly branched, multiantennary complex N-glycans and keratan sulfate. We hypothesize that NGT may specifically supply β-1,3-N-acetylglucosaminyl-transferase 7 (β3GnT7), Mgat5, and possibly mannosyl (α-1,3-)-glycoprotein β-1,4-N-acetylglucosaminyltransferase (Mgat4) with UDP-GlcNAc.  相似文献   

18.
The relationships between glucose metabolism and exopolysaccharide (EPS) production in a Lactococcus lactis strain containing the EPS gene cluster (Eps+) and in nonproducer strain MG5267 (Eps) were characterized. The concentrations of relevant phosphorylated intermediates in EPS and cell wall biosynthetic pathways or glycolysis were determined by 31P nuclear magnetic resonance. The concentrations of two EPS precursors, UDP-glucose and UDP-galactose, were significantly lower in the Eps+ strain than in the Eps strain. The precursors of the peptidoglycan pathway, UDP-N-acetylglucosamine and UDP-N-acetylmuramoyl-pentapeptide, were the major UDP-sugar derivatives detected in the two strains examined, but the concentration of the latter was greater in the Eps+ strain, indicating that there is competition between EPS synthesis and cell growth. An intermediate in biosynthesis of histidine and nucleotides, 5-phosphorylribose 1-pyrophosphate, accumulated at concentrations in the millimolar range, showing that the pentose phosphate pathway was operating. Fructose 1,6-bisphosphate and glucose 6-phosphate were the prominent glycolytic intermediates during exponential growth of both strains, whereas in the stationary phase the main metabolites were 3-phosphoglyceric acid, 2-phosphoglyceric acid, and phosphoenolpyruvate. The activities of relevant enzymes, such as phosphoglucose isomerase, α-phosphoglucomutase, and UDP-glucose pyrophosphorylase, were identical in the two strains. 13C enrichment on the sugar moieties of pure EPS showed that glucose 6-phosphate is the key metabolite at the branch point between glycolysis and EPS biosynthesis and ruled out involvement of the triose phosphate pool. This study provided clues for ways to enhance EPS production by genetic manipulation.  相似文献   

19.
Small-intestinal deoxyribonucleic acid (DNA) loss rates were measured in six patients with Strongyloides stercoralis hyperinfestation, in four patients with hookworm disease, and in eight normal controls. In the four patients with strongyloidiasis having weight loss, hypoproteinaemia, and oedema the mean DNA loss rates were 73·9, 51·6, 58·0, and 62·2 ng atoms DNA-P/min respectively, which was significantly higher than that of patients with hookworm disease (mean 17·3, S.D. 6·6) or in eight control subjects (mean 14·5, S.D. 7·5). In two of three patients with strongyloidiasis the high DNA loss rates fell to normal after treatment, and in two others investigated only after treatment the rates were normal. It is suggested that the high epithelial cell turnover in these patients may result in excessive loss of endogenous substances and that this may be an important mechanism in causing malnutrition and hypoproteinaemia in patients with S. stercoralis hyperinfestation.  相似文献   

20.
Glucosamine and mannose were incorporated into oligosaccharides linked to either polar membrane-lipids or to asparagine residues of endogenous proteins in apical growing tissues of the etiolated pea stem. The glycolipids were subject to turnover in pulse-chase tests and protein-linked oligosaccharides accumulated with time, as expected for a precursor-product relationship. The newly formed glycoproteins were hydrolyzed by endo-β-N-acetylglucosaminidase H to oligosaccharides in the same size range as those released by dilute acid from the lipid-linked oligosaccharides formed during the pulse. The glycoproteins were also partly degraded to free N-acetylglucosamine by β-N-acetylhexosaminidase. Affinity of the carbohydrate moiety of the protein for concanavalin A increased between the beginning and the end of the chase, indicating processing following core glycosylation.

The addition of UDP-N-acetyl-[14C]glucosamine plus external peptide acceptors (derived from carboxymethylated α-lactalbumin) to membrane preparations from the pea stem resulted in peptide glycosylation at the expense of lipid-linked oligosaccharide. Glycosylation of endogenous protein acceptors did not take place via lipid intermediates but directly from the sugar nucleotide substrate. Tunicamycin inhibited glycosyltransfer to both glycolipids and added peptides, but not to endogenous protein. It is concluded that limiting factors for N-glycosylation by pea membranes in vitro could include the unavailability of endogenous acceptors or the inability to fully elongate and internalize lipid precursors, but is not due to any limitation in capacity for N-glycosylation.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号