首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concept of homeostasis (i.e., constancy of the milieu interne) has long dominated the teaching and practice of medicine. Concepts and findings from chronobiology, the scientific study of biological rhythms, challenge this construct. Biological processes and functions are not at all constant; rather, they are organized in time as rhythms with period lengths that range in duration from as short as a second or less to as long as a year. It is the body's circadian (24h) rhythms that have been researched most intensely. The peak and trough of these rhythms are ordered rather precisely in time to support the biological requirements of activity during the day and sleep at night. The timing of the peak and trough plus the magnitude of variation (amplitude) of physiological and biochemical functions during the 24h give rise to predictable-in-time, day-night patterns in the manifestation and exacerbation of many common medical conditions. Circadian rhythms also can influence the response of patients to diagnostic tests and therapeutic interventions according to their timing with reference to body rhythms. Rhythms in the pathophysiology of medical conditions and patient tolerance to medications constitute the basis for chronotherapeutics, the timing of treatment in relation to biological rhythm determinants as a means of optimizing beneficial effects and safety. The article discusses recent advances in medical chronobiology and chronotherapeutics and their relevance to clinical medicine in general and the management of asthma in particular. Indeed, since asthma is a disease that exhibits rather profound circadian rhythmicity, investigation of its pathophysiology and therapy necessitates a chronobiologic approach.  相似文献   

2.
Two Gallup telephone interview surveys were conducted during 1996 of 320 American primary care physicians and 1011 adults to assess their knowledge and attitudes about medical chronobiology and chronotherapeu-tics. Of the doctors, 88% claimed to possess at least some familiarity with the concept of chronobiology and circadian rhythms; however, many were not often able to identify correctly the time of day or night when common medical conditions and events most likely occur or worsen. Furthermore, a significant number of doctors believed that chronotherapies, special dosage forms that proportion medications during the day and night in synchrony to need with reference to 24h patterns in the intensity of symptoms and risk of severe medical events, were already being marketed in the United States for angina pectoris, hypertension, respiratory allergies, and other medical conditions even though this was not the case at the time of the survey. On the other hand, the doctors were relatively unaware of those chronotherapies that actually did exist to treat asthma and peptic ulcer disease. American adults also lacked knowledge of temporal patterns in disease and were seldom able to identify the clock time when asthma and myocardial infarction are of greatest risk or when blood pressure is highest. Although neither the American physicians nor adults possessed knowledge of these facts, both had a strong positive attitude toward the concept of chronotherapeutics. Overall, the findings of these Gallup surveys indicate that a massive educational effort is necessary immediately to ensure new developments in medical chronobiology and chronotherapeutics are correctly comprehended and properly incorporated by physicians into clinical medicine and wisely utilized by patients.  相似文献   

3.
袁力  李艺柔  徐小冬 《遗传》2018,40(1):1-11
时间生物学主要研究生物节律的产生及生物钟的运行机制,2017年诺贝尔生理或医学奖的颁布再次引发人们对该领域诸多科学问题的高度关注。生物钟与日月运行引起的环境信号周期性保持同步,有利于生物节律的相位和组织稳态的精确维持。本文介绍了生物节律现象的早期研究及随后生物钟理论体系建立的发展简史,并结合2017年诺贝尔生理或医学奖的解读阐述了果蝇生物钟基因的发现与分子调控机理,进而简单归纳当前时间生物学领域的前沿科学问题,阐明生物钟研究的意义。  相似文献   

4.
5.
A quiet, little-publicized development has taken place in the biomedical sciences in recent years. The new terms chronobiology, chronopharmacology, chronopharma-codynamics, chronopharmacokineties, and even chronotoxicology very gently have entered our language and our science. Chronobiologic considerations have been proved to increase or decrease therapeutic drug effectiveness or modify their toxicology. Many authors have pointed out that cues to these advantages or disadvantages may be obtained from animal studies that show that normal changes of cellular rhythms take place at prescribed intervals for many biologic parameters. We are observing replacement of the traditional unidimensional reference intervals by timing drug administration most effectively according to the rhythms having phase, frequency, and amplitude. Oncologists have utilized these concepts most successfully to increase the therapeutic effectiveness and decrease toxicity of antineoplastic agents. In addition, asthma has received great attention as a circadian rhythm-related disorder; angina and myocardial infarction, hypertension, peptic ulcer, and epilepsy are other disease conditions that have been treated successfully by understanding how biological rhythms influence diagnosis and therapy.  相似文献   

6.
A quiet, little-publicized development has taken place in the biomedical sciences in recent years. The new terms chronobiology, chronopharmacology, chronopharma-codynamics, chronopharmacokineties, and even chronotoxicology very gently have entered our language and our science. Chronobiologic considerations have been proved to increase or decrease therapeutic drug effectiveness or modify their toxicology. Many authors have pointed out that cues to these advantages or disadvantages may be obtained from animal studies that show that normal changes of cellular rhythms take place at prescribed intervals for many biologic parameters. We are observing replacement of the traditional unidimensional reference intervals by timing drug administration most effectively according to the rhythms having phase, frequency, and amplitude. Oncologists have utilized these concepts most successfully to increase the therapeutic effectiveness and decrease toxicity of antineoplastic agents. In addition, asthma has received great attention as a circadian rhythm-related disorder; angina and myocardial infarction, hypertension, peptic ulcer, and epilepsy are other disease conditions that have been treated successfully by understanding how biological rhythms influence diagnosis and therapy.  相似文献   

7.
《Chronobiology international》2013,30(7):1005-1018
Simon Folkard in 1997 introduced the phrase black time to draw attention to the fact that the risk of driving accidents (DA) is greater during the night than day in usually diurnally active persons. The 24 h temporal pattern in DA entails circadian rhythms of fatigue and sleep propensity, cognitive and physical performance, and behavior that are controlled, at least in part, by endogenous clocks. This opinion paper extends the concept of black time to reports of excess nighttime accidents and injuries of workers and nocturnal occurrence of certain man-caused catastrophes. We explore the chronobiology of work-related black time accidents and injuries taking into account laboratory and field investigations describing, respectively, circadian rhythms in cognitive performance and errors and mistakes by employees in the conduct of routine occupational tasks. Additionally, we present results of studies pertaining to 24 h patterns of both the number and relative risk (number of events per h/number of workers exposed per h) of work-related accidents (WRA) and injuries (WRI) as well as indices of performance and alertness of a self-selected homogenous survivor cohort of French firefighters (FFs) to explore two possible explanations of black time, namely, 24 h variation in sleep propensity/drossiness characterized by a nocturnal peak and circadian rhythms in cognitive performance characterized by a nocturnal trough. We propose the 24 h pattern of WRA and WRI, particularly of FFs and other highly skilled self-selected cohorts, is more strongly linked to circadian rhythms of fatigue and sleepiness than cognitive performance. Other possible explanations –suppressed expression of circadian rhythms and/or unmasking of ultradian periodicities in cognitive performance in specific circumstances, e.g., highly stressful work, competitive, or life-threatening settings, are also discussed.  相似文献   

8.
We investigated changes in the circadian rhythm of peak expiratory flow (PEF) in seven persons with nocturnal asthma for a 24h span when (1) they were symptom free and their disease was stable, (2) their asthma deteriorated and nocturnal symptoms were frequent, and (3) they were treated with theophylline chronotherapy. Subjects recorded their PEF every 4h between 07:00 and 23:00 one day each period. Circadian rhythms in PEF were assessed using the group-mean cosinor method. The circadian rhythm in PEF varied according to asthma severity. Significant circadian rhythms in PEF were detected during the period when asthma was stable and when it was unstable and nocturnal symptoms were frequent. When nocturnal symptoms were present, the bathyphase (trough time) of the PEF rhythm narrowed to around 04:00; during this time of unstable asthma, the amplitude of the PEF pattern increased 3.9-fold compared to the symptom-free period. No significant group circadian rhythm was detected during theophylline chronotherapy. Evening theophylline chronotherapy proved to be prophylactic for persons whose symptoms before treatment had occurred between midnight and early morning. Changes in the characteristics of the circadian rhythm of PEF, particularly amplitude and time of bathyphase, proved useful in determining when to institute theophylline chronotherapy to avert nocturnal asthma symptoms. (Chronobiology International, 17(4), 513–519, 2000)  相似文献   

9.
We investigated changes in the circadian rhythm of peak expiratory flow (PEF) in seven persons with nocturnal asthma for a 24h span when (1) they were symptom free and their disease was stable, (2) their asthma deteriorated and nocturnal symptoms were frequent, and (3) they were treated with theophylline chronotherapy. Subjects recorded their PEF every 4h between 07:00 and 23:00 one day each period. Circadian rhythms in PEF were assessed using the group-mean cosinor method. The circadian rhythm in PEF varied according to asthma severity. Significant circadian rhythms in PEF were detected during the period when asthma was stable and when it was unstable and nocturnal symptoms were frequent. When nocturnal symptoms were present, the bathyphase (trough time) of the PEF rhythm narrowed to around 04:00; during this time of unstable asthma, the amplitude of the PEF pattern increased 3.9-fold compared to the symptom-free period. No significant group circadian rhythm was detected during theophylline chronotherapy. Evening theophylline chronotherapy proved to be prophylactic for persons whose symptoms before treatment had occurred between midnight and early morning. Changes in the characteristics of the circadian rhythm of PEF, particularly amplitude and time of bathyphase, proved useful in determining when to institute theophylline chronotherapy to avert nocturnal asthma symptoms. (Chronobiology International, 17(4), 513-519, 2000)  相似文献   

10.
Biological processes are organized in time as innate rhythms defined by the period (τ), phase (peak [Φ] and trough time), amplitude (A, peak-trough difference) and mean level. The human time structure in its entirety is comprised of ultradian (τ < 20 h), circadian (20 h > τ < 28 h) and infradian (τ > 28 h) bioperiodicities. The circadian time structure (CTS) of human beings, which is more complicated than in lower animals, is orchestrated and staged by a brain central multioscillator system that includes a prominent pacemaker – the suprachiasmatic nuclei of the hypothalamus. Additional pacemaker activities are provided by the pineal hormone melatonin, which circulates during the nighttime, and the left and right cerebral cortices. Under ordinary circumstances this system coordinates the τ and Φ of rhythms driven by subservient peripheral cell, tissue and organ clock networks. Cyclic environmental, feeding and social time cues synchronize the endogenous 24 h clocks and rhythms. Accordingly, processes and functions of the internal environment are integrated in time for maximum biological efficiency, and they are also organized and synchronized in time to the external environment to ensure optimal performance and response to challenge. Artificial light at night (ALAN) exposure can alter the CTS as can night work, which, like rapid transmeridian displacement by air travel, necessitates realignment of the Φ of the multitude of 24 h rhythms. In 2001, Stevens and Rea coined the phrase “circadian disruption” (CD) to label the CTS misalignment induced by ALAN and shift work (SW) as a potential pathologic mechanism of the increased risk for cancer and other medical conditions. Current concerns relating to the effects of ALAN exposure on the CTS motivated us to renew our long-standing interest in the possible role of CD in the etiopathology of common human diseases and patient care. A surprisingly large number of medical conditions involve CD: adrenal insufficiency; nocturia; sleep-time non-dipping and rising blood pressure 24 h patterns (nocturnal hypertension); delayed sleep phase syndrome, non-24 h sleep/wake disorder; recurrent hypersomnia; SW intolerance; delirium; peptic ulcer disease; kidney failure; depression; mania; bipolar disorder; Parkinson’s disease; Smith–Magenis syndrome; fatal familial insomnia syndrome; autism spectrum disorder; asthma; byssinosis; cancers; hand, foot and mouth disease; post-operative state; and ICU outcome. Poorly conceived medical interventions, for example nighttime dosing of synthetic corticosteroids and certain β-antagonists and cyclic nocturnal enteral or parenteral nutrition, plus lifestyle habits, including atypical eating times and chronic alcohol consumption, also can be causal of CD. Just as surprisingly are the many proven chronotherapeutic strategies available today to manage the CD of several of these medical conditions. In clinical medicine, CD seems to be a common, yet mostly unrecognized, pathologic mechanism of human disease as are the many effective chronotherapeutic interventions to remedy it.  相似文献   

11.
This research dealt with rhythmometric methods for estimating and comparing the main temporal parameters characterizing the circadian structure of behavioral events in mice with and without lithium treatment. Such comparative chronobiologic studies would tend to demonstrate in psychophysiology that this drug does not displace the circadian patterns of basic emotionality, but does displace some behavioral circadian rhythms associated with more corticalized integrations. The present behavioral observations would tend to support the hypothesis that lithium salts modify the circadian structure of emotionality by cortical modulation rather than only by physiological subcortical integrations. Such circadian studies show also that behavioral chronobiology raises some working hypotheses in comparative ethology and permits the development of new heuristic concepts in the field of biological psychiatry.  相似文献   

12.
Circadian clocks control the daily life of most light-sensitive organisms - from cyanobacteria to humans. Molecular processes generate cellular rhythmicity, and cellular clocks in animals coordinate rhythms through interaction (known as coupling). This hierarchy of clocks generates a complex, approximately 24-hour temporal programme that is synchronized with the rotation of the Earth. The circadian system ensures anticipation and adaptation to daily environmental changes, and functions on different levels - from gene expression to behaviour. Circadian research is a remarkable example of interdisciplinarity, unravelling the complex mechanisms that underlie a ubiquitous biological programme. Insights from this research will help to optimize medical diagnostics and therapy, as well as adjust social and biological timing on the individual level.  相似文献   

13.
W B Quay  S Guth 《Chronobiologia》1975,2(3):243-264
The premise of this review is that chronobiology, the science of biologic time structure and rhythms, is important in investigations concerning the etiology, mechanisms and effects of deficient mental adaptive development. Chronobiology is also shown to have potential importance in therapeutics and rehabilitation. Most of the information available now and supporting this wide-spread relevance of chronobiology relates to circadian rhythms, but physiological and behavioral rhythms having other cycle lengths also contribute. Recent findings in seven topic areas of chronobiology are reviewed with emphasis on facts and relationships actually or potentially important for consideration in mental retardation research. These are: 1) development of sleep and EEG patterns; 2) rhythmic susceptibility to seizures; 3) adrenocortical and dependent rhythms; 4) circadian rhythms in amino acids and biogenic amines; 5) rhythmic behaviors; 6) circadian rhythms in susceptibility and responses to drugs; and 7) circadian rhythms in human perception and performance.  相似文献   

14.
Biological clocks are genetically encoded oscillators that allow organisms to keep track of their environment. Among them, the circadian system is a highly conserved timing structure that regulates several physiological, metabolic and behavioural functions with periods close to 24 h. Time is also crucial for everyday activities that involve conscious time estimation. Timing behaviour in the second-to-minutes range, known as interval timing, involves the interaction of cortico-striatal circuits. In this review, we summarize current findings on the neurobiological basis of the circadian system, both at the genetic and behavioural level, and also focus on its interactions with interval timing and seasonal rhythms, in order to construct a multi-level biological clock.  相似文献   

15.
We investigated the efficacy of nighttime transdermal tulobuterol (beta2-adrenoceptor agonist) chronotherapy for nocturnal asthma by assessing changes both in the frequency of symptoms and features of the circadian rhythm in peak expiratory flow (PEF), a measure of airway caliber. Thirteen patients with nocturnal asthma were evaluated before and during tulobuterol patch chronotherapy, applied once daily in the evening for 6 consecutive days. Patients were asked to record their PEF every 4h between 03:00 and 23:00 h for one day. Circadian rhythms in PEF were examined by group-mean cosinor analysis. The group average PEF at 03:00 h, the time during the 24 h when PEF is generally the poorest, before the application of the chronotherapy, when asthma was unstable and nocturnal symptoms frequent, was 276 +/- 45 L/min. Application of the tulobuterol patch at nighttime significantly increased (p < 0.001) the 03:00 h group average PEF to 363 +/- 67 L/min. Significant circadian rhythms in PEF were observed during the span of study when nocturnal symptoms were frequent as well as with the use of the tulobuterol patch. Before the initiation of tulobuterol chronotherapy, the bathyphase (trough time of the circadian rhythm) in PEF narrowed to around 04:00h, and the group circadian amplitude was 28.8 L/min. In contrast, the group circadian amplitude significantly (p < 0.01) decreased to 10.4 L/min, and the 24 h mean PEF increased significantly with tulobuterol patch chronotherapy. These changes indicate that tulobuterol chronotherapy significantly increased both the level and stability of airway function over the 24 h. The circadian rhythm in PEF varied with the severity and frequency of asthmatic symptoms with and without the nighttime application of the tulobuterol patch medication. We conclude that the parameters of the circadian rhythm of PEF proved useful both in determining the need for and effectiveness of tulobuterol chronotherapy for nocturnal asthma.  相似文献   

16.
The plant maintains a 24‐h circadian cycle that controls the sequential activation of many physiological and developmental functions. There is empirical evidence suggesting that two types of circadian rhythms exist. Some plant rhythms appear to be set by the light transition at dawn, and are calibrated to circadian (zeitgeber) time, which is measured from sunrise. Other rhythms are set by both dawn and dusk, and are calibrated to solar time that is measured from mid‐day. Rhythms on circadian timing shift seasonally in tandem with the timing of dawn that occurs earlier in summer and later in winter. On the other hand, rhythms set to solar time are maintained independently of the season, the timing of noon being constant year‐round. Various rhythms that run in‐phase and out‐of‐phase with one another seasonally may provide a means to time and induce seasonal events such as flowering.  相似文献   

17.
The existence of circadian (24-h) rhythms in the coagulation activity of vitamin K-dependent coagulation factors (Factors II, VII, IX, and X) were studied in six healthy young (18-30 years old) and six healthy elderly (69-75 years old) men. Aliquots of 5 ml of blood were obtained from each of the 12 subjects at six different time points over a 24-h period. Factors II, VII, and X were quantified by the prothrombin time test, whereas Factor IX was analyzed by the activated partial thromboplastin time test. Significant circadian variations were found for Factors II and VII in both age groups. The peak and trough values for Factor II were observed at 16: 00 and 00: 00 in young men and at 12: 00 and 16: 00 in elderly men. The amplitude of the rhythmic variation of Factor II was 3.3 ± 1.0 and 4.2 ± 0.9% in young and elderly volunteers, respectively. For Factor VII, the highest values were found during the activity period (08: 00-16: 00), while the lowest values occurred at night (00: 00) for both groups of subjects. The amplitude of the rhythms was twice as large in the young (6.2 ± 2.3%) as in the elderly (3.7 ± 0.8%). The data suggest that age does not alter significantly the chronobiology of Factors II and VII.  相似文献   

18.
The existence of circadian (24-h) rhythms in the coagulation activity of vitamin K-dependent coagulation factors (Factors II, VII, IX, and X) were studied in six healthy young (18–30 years old) and six healthy elderly (69–75 years old) men. Aliquots of 5 ml of blood were obtained from each of the 12 subjects at six different time points over a 24-h period. Factors II, VII, and X were quantified by the prothrombin time test, whereas Factor IX was analyzed by the activated partial thromboplastin time test. Significant circadian variations were found for Factors II and VII in both age groups. The peak and trough values for Factor II were observed at 16: 00 and 00: 00 in young men and at 12: 00 and 16: 00 in elderly men. The amplitude of the rhythmic variation of Factor II was 3.3 ± 1.0 and 4.2 ± 0.9% in young and elderly volunteers, respectively. For Factor VII, the highest values were found during the activity period (08: 00–16: 00), while the lowest values occurred at night (00: 00) for both groups of subjects. The amplitude of the rhythms was twice as large in the young (6.2 ± 2.3%) as in the elderly (3.7 ± 0.8%). The data suggest that age does not alter significantly the chronobiology of Factors II and VII.  相似文献   

19.
Most knowledge of medications has been derived from single- and multiple-dose investigations in which pharmacokinetic and pharmacodynamic phenomena have been evaluated following one, usually, daytime drug administration. Chronopharmacologic studies involving the evaluation of such phenomena after each of several different clock-hour treatments during the day- and nighttime reveal that biological rhythmic processes, such as those of 24 hr, can profoundly affect the kinetics and effects of various medications. Several new concepts have arisen based on findings from chronopharmacologic investigations, such as chronokinetics, chronesthesy and chronergy. These are defined and discussed herein using illustrative examples. A major goal of chronopharmacologic research is to devise chronotherapeutic interventions. Chronotherapeutics is the optimization of drug effects and/or minimization of toxicity by timing medications with regard to biological rhythms. Chronotherapeutics takes into account predictable administration-time-dependent variation in the pharmacokinetics of drugs as well as the susceptibility of target tissues due to temporal organization of physiochemical processes and functions of the body as circadian and other rhythms. The unequally divided and once-daily theophylline treatment schedules for the clinical management of nocturnal asthma, which are discussed in this issue, represent steps toward a chronotherapy.  相似文献   

20.
We investigated the efficacy of nighttime transdermal tulobuterol (β2‐adrenoceptor agonist) chronotherapy for nocturnal asthma by assessing changes both in the frequency of symptoms and features of the circadian rhythm in peak expiratory flow (PEF), a measure of airway caliber. Thirteen patients with nocturnal asthma were evaluated before and during tulobuterol patch chronotherapy, applied once daily in the evening for 6 consecutive days. Patients were asked to record their PEF every 4 h between 03:00 and 23:00 h for one day. Circadian rhythms in PEF were examined by group‐mean cosinor analysis. The group average PEF at 03:00 h, the time during the 24 h when PEF is generally the poorest, before the application of the chronotherapy, when asthma was unstable and nocturnal symptoms frequent, was 276±45 L/min. Application of the tulobuterol patch at nighttime significantly increased (p<0.001) the 03:00 h group average PEF to 363±67 L/min. Significant circadian rhythms in PEF were observed during the span of study when nocturnal symptoms were frequent as well as with the use of the tulobuterol patch. Before the initiation of tulobuterol chronotherapy, the bathyphase (trough time of the circadian rhythm) in PEF narrowed to around 04:00 h, and the group circadian amplitude was 28.8 L/min. In contrast, the group circadian amplitude significantly (p<0.01) decreased to 10.4 L/min, and the 24 h mean PEF increased significantly with tulobuterol patch chronotherapy. These changes indicate that tulobuterol chronotherapy significantly increased both the level and stability of airway function over the 24 h. The circadian rhythm in PEF varied with the severity and frequency of asthmatic symptoms with and without the nighttime application of the tulobuterol patch medication. We conclude that the parameters of the circadian rhythm of PEF proved useful both in determining the need for and effectiveness of tulobuterol chronotherapy for nocturnal asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号