首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cardiovascular abnormalities are the leading cause of neonatal death among patients with congenital rubella syndrome (CRS). Although persistence of rubella virus (RV) in fetal endothelium has been repeatedly suggested as a possible cause of cardiovascular birth defects, evidence of the permissiveness of fetal endothelial cells to RV is lacking. In this study we evaluated the ability of RV to infect and persist in primary fetal endothelial cells derived from human umbilical vein (HUVEC). We found that wild type (wt) low passage clinical RV productively infected HUVEC cultures without producing cytopathology or ultrastructural changes. RV did not inhibit host cell protein synthesis, cell proliferation, or interfere with the cell cycle. Persistently infected cultures were easily established at low and high multiplicities of infection (MOI) with both laboratory and wt clinical RV strains. However, synchronous infections of entire HUVEC monolayers were only observed with clinical RV strains. The release of infectious virions into media remained at consistently high levels for several subcultures of infected HUVEC. The results indicate that macrovascular fetal endothelial cells are highly permissive to RV and allow slow persistent RV replication. The findings provide more evidence for the suggestion that vascular pathologies in CRS are triggered by persistent rubella virus infection of the endothelium.  相似文献   

2.
It has been suggested that infectious entry of rubella virus (RV) is conducted by receptor mediated endocytosis. To explore the cellular entry mechanism of RV, inhibitory effects of drugs affecting various endocytic pathways on RV entry into VeroE6 cells were analyzed. Results showed that RV infectious entry into VeroE6 cells is mediated by clathrin-dependent endocytosis and not by caveolae-mediated endocytosis. Moreover, chemical inhibition of macropinocytosis such as treatments of amiloride, actin and microtubule-disrupting drug significantly reduced RV infection. Considering that macropinocytosis is inducible endocytosis by cellular stimulations, clathrin-mediated endocytosis is likely to be a major route of RV infectious entry.  相似文献   

3.
BACKGROUND: In utero rubella virus (RV) infection of a fetus can result in birth defects that are often collectively referred to as congenital rubella syndrome (CRS). In extreme cases, fetal death can occur. In spite of the availability of a safe and effective vaccine against rubella, recent worldwide estimates are that more than 100,000 infants are born with CRS annually. RECENT PROGRESS: Recently, several significant findings in the field of cell biology, as well as in the RV replication and virus-cell interactions, have originated from the authors' laboratory, and other researchers have provided insights into RV teratogenesis. It has been shown that 1) an RV protein induces cell-cycle arrest by generating a subpopulation of tetraploid nuclei (i.e., 4N DNA) cells, perhaps representative of the tetraploid state following S phase in the cell cycle, due to its interaction with citron-K kinase (CK); 2) RV infection induces apoptosis in cell culture, and 3) CK functional perturbations lead to tetraploidy, followed by apoptosis, in specific cell types. CONCLUSIONS: Based on several similarities between known RV-associated fetal and cellular manifestations and CK deficiency-associated phenotypes, it is reasonable to postulate that P90-CK interaction in RV-infected cells interferes with CK function and induces cell-cycle arrest following S phase in a subpopulation, perhaps representative of tetraploid stage, which could lead to subsequent apoptosis in RV infection. Taking all these observations to the fetal organogenesis level, it is plausible that P90-CK interaction could perhaps be one of the initial steps in RV infection-induced apoptosis-associated fetal birth defects in utero.  相似文献   

4.
Myelin oligodendrocyte glycoprotein (MOG) is an Ag present in the myelin sheath of the CNS thought to be targeted by the autoimmune T cell response in multiple sclerosis (MS). In this study, we have for the first time characterized the T cell epitopes of human MOG restricted by HLA-DR4 (DRB1*0401), an MHC class II allele associated with MS in a subpopulation of patients. Using MHC binding algorithms, we have predicted MOG peptide binding to HLA-DR4 (DRB1*0401) and subsequently defined the in vivo T cell reactivity to overlapping MOG peptides by testing HLA-DR4 (DRB1*0401) transgenic mice immunized with recombinant human (rh)MOG. The data indicated that MOG peptide 97-108 (core 99-107, FFRDHSYQE) was the immunodominant HLA-DR4-restricted T cell epitope in vivo. This peptide has a high in vitro binding affinity for HLA-DR4 (DRB1*0401) and upon immunization induced severe experimental autoimmune encephalomyelitis in the HLA-DR4 transgenic mice. Interestingly, the same peptide was presented by human B cells expressing HLA-DR4 (DRB1*0401), suggesting a role for the identified MOG epitopes in the pathogenesis of human MS.  相似文献   

5.
6.
A random-primed cDNA expression library constructed from the mRNA of neuroblastoma cells (NG108) was used to clone a specific rabies virus (RV) receptor. A soluble form of the RV glycoprotein (Gs) was utilized as a ligand to detect positive cells. We identified the murine low-affinity nerve-growth factor receptor, p75NTR. BSR cells stably expressing p75NTR were able to bind Gs and G-expressing lepidopteran cells. The ability of the RV glycoprotein to bind p75NTR was dependent on the presence of a lysine and arginine in positions 330 and 333 respectively of antigenic site III, which is known to control virus penetration into motor and sensory neurons of adult mice. P75NTR-expressing BSR cells were permissive for a non-adapted fox RV isolate (street virus) and nerve growth factor (NGF) decreased this infection. In infected cells, p75NTR associates with the RV glycoprotein and could be precipitated with anti-G monoclonal antibodies. Therefore, p75NTR is a receptor for street RV.  相似文献   

7.
Rotavirus (RV) being the major diarrhoegenic virus causes around 527000 children death (<5years age) worldwide. In cellular environment, viruses constantly adapt and modulate to survive and replicate while the host cell also responds to combat the situation and this results in the differential regulation of cellular proteins. To identify the virus induced differential expression of proteins, 2D-DIGE (Two-dimensional Difference Gel Electrophoresis) based proteomics was used. For this, HT-29 cells were infected with RV strain SA11 for 0 hours, 3 hours and 9 hours post infection (hpi), differentially expressed spots were excised from the gel and identified using MALDI-TOF/TOF mass spectrometry. 2D-DIGE based proteomics study identified 32 differentially modulated proteins, of which 22 were unique. Some of these were validated in HT-29 cell line and in BALB/c mice model. One of the modulated cellular proteins, calmodulin (CaM) was found to directly interact with RV protein VP6 in the presence of Ca2+. Ca2+-CaM/VP6 interaction positively regulates RV propagation since both CaM inhibitor (W-7) and Ca2+ chelator (BAPTA-AM) resulted in decreased viral titers. This study not only identifies differentially modulated cellular proteins upon infection with rotavirus in 2D-DIGE but also confirmed positive engagement of cellular Ca2+/CaM during viral pathogenesis.  相似文献   

8.
Rubella virus (RV) causes severe congenital defects when acquired during the first trimester of pregnancy. RV cytopathic effect has been shown to be due to caspase-dependent apoptosis in a number of susceptible cell lines, and it has been suggested that this apoptotic induction could be a causal factor in the development of such defects. Often the outcome of apoptotic stimuli is dependent on apoptotic, proliferative and survival signaling mechanisms in the cell. Therefore we investigated the role of phosphoinositide 3-kinase (PI3K)-Akt survival signaling and Ras-Raf-MEK-ERK proliferative signaling during RV-induced apoptosis in RK13 cells. Increasing levels of phosphorylated ERK, Akt and GSK3β were detected from 24–96 hours post-infection, concomitant with RV-induced apoptotic signals. Inhibition of PI3K-Akt signaling reduced cell viability, and increased the speed and magnitude of RV-induced apoptosis, suggesting that this pathway contributes to cell survival during RV infection. In contrast, inhibition of the Ras-Raf-MEK-ERK pathway impaired RV replication and growth and reduced RV-induced apoptosis, suggesting that the normal cellular growth is required for efficient virus production.  相似文献   

9.
Myelin oligodendrocyte glycoprotein (MOG) is a type I integral membrane glycoprotein that localizes to myelin sheaths in the central nervous system. MOG has important implications in multiple sclerosis, as pathogenic anti-MOG antibodies have been detected in the sera of multiple sclerosis patients. As a membrane protein, MOG achieves its native structure in the endoplasmic reticulum where its folding is expected to be controlled by endoplasmic reticulum chaperones. Calnexin, calreticulin, and ERp57 are essential components of the endoplasmic reticulum quality control where they assist in the proper folding of newly synthesized glycoproteins. In this study, we show that expression of MOG is not affected by the absence of the endoplasmic reticulum quality control proteins calnexin, calreticulin, or ERp57. We also show that calnexin forms complexes with MOG and these interactions might be glycan-independent. Importantly, we show that cell surface targeting of MOG is not disrupted in the absence of the endoplasmic reticulum chaperones. This article is part of a special issue entitled: 11th European Symposium on Calcium.  相似文献   

10.
Li Q  Ali MA  Cohen JI 《Cell》2006,127(2):305-316
Varicella-zoster virus (VZV) causes chickenpox and shingles. While varicella is likely spread as cell-free virus to susceptible hosts, the virus is transmitted by cell-to-cell spread in the body and in vitro. Since VZV glycoprotein E (gE) is essential for virus infection, we postulated that gE binds to a cellular receptor. We found that insulin-degrading enzyme (IDE) interacts with gE through its extracellular domain. Downregulation of IDE by siRNA, or blocking of IDE with antibody, with soluble IDE protein extracted from liver, or with bacitracin inhibited VZV infection. Cell-to-cell spread of virus was also impaired by blocking IDE. Transfection of cell lines impaired for VZV infection with a plasmid expressing human IDE resulted in increased entry and enhanced infection with cell-free and cell-associated virus. These studies indicate that IDE is a cellular receptor for both cell-free and cell-associated VZV.  相似文献   

11.
The Structure and Function of Myelin Oligodendrocyte Glycoprotein   总被引:7,自引:4,他引:3  
Abstract : Myelin oligodendrocyte glycoprotein (MOG) is a quantitatively minor component of CNS myelin whose function remains relatively unknown. As MOG is an autoantigen capable of producing a demyelinating multiple sclerosis-like disease in mice and rats, much of the research directed toward MOG has been immunological in nature. Although the function of MOG is yet to be elucidated, there is now a relatively large amount of biochemical and molecular data relating to MOG. Here we summarize this information and include our recent findings pertaining to the cloning of the marsupial MOG gene. On the basis of this knowledge we suggest three possible functions for MOG : (a) a cellular adhesive molecule, (b) a regulator of oligodendrocyte microtubule stability, and (c) a mediator of interactions between myelin and the immune system, in particular, the complement cascade. Given that antibodies to MOG and to the myelin-specific glycolipid galactocerebroside (Gal-C) both activate the same signaling pathway leading to MBP degradation, we propose that there is a direct interaction between the membrane-associated regions of MOG and Gal-C. Such an interaction may have important consequences regarding the membrane topology and function of both molecules. Finally, we examine how polymorphisms and/or mutations to the MOG gene could contribute to the pathogenesis of multiple sclerosis.  相似文献   

12.
We have previously shown that aminoglycosides such as neomycin and the polyamino acids polylysine and polyarginine selectively inhibit the binding of herpes simplex virus type 1 (HSV-1) to the cellular receptor, whereas HSV-2 infection is unaffected. In the present study we took advantage of this difference between HSV-1 and HSV-2 by using HSV(-1)-HSV(-2) intertypic recombinants to locate a region on the HSV-1 genome encoding proteins affecting the binding of the virion to the cellular receptor. The results were consistent with those obtained by marker rescue experiments. The identified region, which mapped between coordinates 0.580 and 0.687, contains two partial and eight complete genes, including the glycoprotein C (gC) gene and two others with potential transmembrane sequences. Various gC monoclonal antibody-resistant mutants of HSV-1 as well as a mutant completely lacking gC were found to be fully sensitive to neomycin, suggesting that gC is not the site of drug sensitivity and is not essential for adsorption of virus to the cellular receptor. However, the rate of adsorption was reduced in the absence of gC, indicating a facilitating function of the glycoprotein. The universal nature of this HSV-1 receptor binding was revealed by the similarity in drug sensitivity of infectivity in four different cell lines from various tissues and species.  相似文献   

13.
The Friend or Moloney mink cell focus-forming (MCF) virus encodes a recombinant-type envelope glycoprotein, gp70, that is closely related to the membrane glycoprotein, gp55, of Friend spleen focus-forming virus (SFFV). We have shown previously that gp55 has the ability to activate cell growth by binding to the cellular receptor for erythropoietin. Here we show that gp70 encoded by either the Friend or Moloney MCF virus also binds to the erythropoietin receptor and that coexpression of the receptor and gp70 in an interleukin-3 (IL-3)-dependent cell line can activate IL-3-independent growth. Furthermore, when the cDNA for the human IL-2 receptor beta chain, which is related by sequence to the erythropoietin receptor, was introduced into this cell line, it became growth factor independent after infection either with SFFV or with one of the two MCF viruses but not with an ecotropic virus. Based on these observations, we propose a mechanism for the early stage of leukemogenesis induced by the MCF-type murine leukemia viruses.  相似文献   

14.
Human respiratory syncytial virus (RSV) causes a large burden of disease worldwide. There is no effective vaccine or therapy, and the use of passive immunoprophylaxis with RSV-specific antibodies is limited to high-risk patients. The cellular receptor (or receptors) required for viral entry and replication has yet to be described; its identification will improve understanding of the pathogenesis of infection and provide a target for the development of novel antiviral interventions. Here we show that RSV interacts with host-cell nucleolin via the viral fusion envelope glycoprotein and binds specifically to nucleolin at the apical cell surface in vitro. We observed decreased RSV infection in vitro in neutralization experiments using nucleolin-specific antibodies before viral inoculation, in competition experiments in which virus was incubated with soluble nucleolin before inoculation of cells, and upon RNA interference (RNAi) to silence cellular nucleolin expression. Transfection of nonpermissive Spodoptera frugiperda Sf9 insect cells with human nucleolin conferred susceptibility to RSV infection. RNAi-mediated knockdown of lung nucleolin was associated with a significant reduction in RSV infection in mice (P = 0.0004), confirming that nucleolin is a functional RSV receptor in vivo.  相似文献   

15.
Rotaviruses (RV) are the most important cause of severe childhood diarrheal disease. In suckling mice, infection with RV results in an increase in total and virus-specific IgA(+) plasmablasts in the small intestinal lamina propria (LP) soon after infection, providing a unique opportunity to study the mechanism of IgA(+) cell recruitment into the small intestine. In this study, we show that the increase in total and RV-specific IgA(+) plasmablasts in the LP after RV infection can be blocked by the combined administration of Abs against chemokines CCL25 and CCL28, but not by the administration of either Ab alone. RV infection in CCR9 knockout mice still induced a significant accumulation of IgA(+) plasmablasts in the LP, which was blocked by the addition of anti-CCL28 Ab, confirming the synergistic role of CCL25 and CCL28. The absence of IgA(+) plasmablast accumulation in LP following combined anti-chemokine treatment was not due to changes in proliferation or apoptosis in these cells. We also found that coadministration of anti-CCL25 and anti-CCL28 Abs with the addition of anti-alpha(4) Ab did not further inhibit IgA(+) cell accumulation in the LP and that the CCL25 receptor, CCR9, was coexpressed with the intestinal homing receptor alpha(4)beta(7) on IgA(+) plasmablasts. Finally, we showed that RV infection was associated with an increase in both CCL25 and CCL28 in the small intestine. Hence, our findings indicate that alpha(4)beta(7) along with either CCR9 or CCR10 are sufficient for mediating the intestinal migration of IgA(+) plasmablasts during RV infection.  相似文献   

16.
The CVS strain of fixed rabies virus causes acute, fatal encephalomyelitis in young adult ICR mice. Variant RV194-2, which was selected from CVS virus in cell culture with a neutralizing antiglycoprotein monoclonal antibody, has a single amino acid change in the glycoprotein. The infections caused by CVS virus and RV194-2 virus were compared in mice for 14 days postinoculation of 5 x 10(7) PFU into the right masseter muscle. All CVS virus-infected mice died (mean time to death, 7.9 days), compared with a mortality rate of 8.5% for RV194-2 virus-infected mice. RV194-2 virus spread to the ipsilateral trigeminal ganglion during the first 2 days postinoculation, and both viruses spread to the ipsilateral motor nucleus of the trigeminal nerve in the pons. Both viruses spread centrifugally and caused infection of bilateral trigeminal ganglia on day 3. The viruses spread throughout the central nervous system (CNS) at similar rates, but CVS virus infected many more neurons than did RV194-2 virus. Rabies virus antigen was observed in only occasional CNS neurons after day 6 of RV194-2 virus infection. By this time, CVS virus had caused severe widespread infection. In this model, virulence depends on improved efficiency of viral spread between CNS neurons rather than the rate of spread or topographical distribution of the infection.  相似文献   

17.
We have initiated an in vitro study comparing the susceptibility of newborn and adult animals to rubella virus (RV) associated encephalitis. Glial cells from injured adult rat brain (RG cells) have been established in continuous culture and these cells were reported to restrict RV replication. When RG cells were infected, no infectious progeny virus particles were detected in tissue culture media and only five intracellular viral polypeptides could be detected using immune precipitation techniques (p75, p60, VP44, VP41, and VP19). Two polypeptides normally associated with a productive infection. VP24 and p30, could not be detected. In this report we have applied these techniques to an investigation of RV replication in newborn brain cells and have shown that relatively normal yields of all seven polypeptides found in RV-infected cells could be detected. These data indicate that some glia from newborn brain in primary culture are permissive for RV replication unlike the restricting RG cells and that this difference in restriction is critical in determining the outcome of their infection by RV.  相似文献   

18.
Genetic polymorphisms are known to affect responses to both viral infection and vaccination. Our previous work has described genetic polymorphisms significantly associated with variations in immune response to rubella vaccine from multiple gene families with known immune function, including HLA, cytokine and cytokine receptor genes, and in genes controlling innate and adaptive immunity. In this study, we assessed cellular immune responses (IFNγ and IL-6) in a cohort of healthy younger individuals and performed genome-wide SNP analysis on these same individuals. Here, we report the first genome-wide association study focused on immune responses following rubella vaccination. Our results indicate that rs16928280 in protein tyrosine phosphatase delta (PTPRD) and a collection of SNPs in ACO1 (encoding an iron regulatory protein) are associated with interindividual variations in IFNγ response to rubella virus stimulation. In contrast, we did not identify any significant genetic associations with rubella-specific IL-6 response. These genetic regions may influence rubella vaccine-induced IFNγ responses and warrant further studies in additional cohorts in order to confirm these findings.  相似文献   

19.
Myelin oligodendrocyte glycoprotein (MOG) is a central nervous system myelin-specific molecule expressed on the outer lamellae of myelin. To date, the exact function of MOG has remained unknown, with MOG knockout mice displaying normal myelin ultrastructure and no apparent specific phenotype. In this paper, we identify nerve growth factor (NGF) as a binding partner for MOG and demonstrate that this interaction is capable of sequestering NGF from TrkA-expressing neurons to modulate axon growth and survival. Deletion of MOG results in aberrant sprouting of nociceptive neurons in the spinal cord. Binding of NGF to MOG may offer widespread implications into mechanisms that underlie pain pathways.  相似文献   

20.
The cellular receptor for the Old World arenaviruses Lassa fever virus (LFV) and lymphocytic choriomeningitis virus (LCMV) has recently been identified as alpha-dystroglycan (alpha-DG), a cell surface receptor that provides a molecular link between the extracellular matrix and the actin-based cytoskeleton. In the present study, we show that LFV binds to alpha-DG with high affinity in the low-nanomolar range. Recombinant vesicular stomatitis virus pseudotyped with LFV glycoprotein (GP) adopted the receptor binding characteristics of LFV and depended on alpha-DG for infection of cells. Mapping of the binding site of LFV on alpha-DG revealed that LFV binding required the same domains of alpha-DG that are involved in the binding of LCMV. Further, LFV was found to efficiently compete with laminin alpha1 and alpha2 chains for alpha-DG binding. Together with our previous studies on receptor binding of the prototypic immunosuppressive LCMV isolate LCMV clone 13, these findings indicate a high degree of conservation in the receptor binding characteristics between the highly human-pathogenic LFV and murine-immunosuppressive LCMV isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号