首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Autophagy, the process for recycling cytoplasm in the lysosome, depends on membrane trafficking. We previously identified Drosophila Sbf as a Rab21 guanine nucleotide exchange factor (GEF) that acts with Rab21 in endosomal trafficking. Here, we show that Sbf/MTMR13 and Rab21 have conserved functions required for starvation‐induced autophagy. Depletion of Sbf/MTMR13 or Rab21 blocked endolysosomal trafficking of VAMP8, a SNARE required for autophagosome–lysosome fusion. We show that starvation induces Sbf/MTMR13 GEF and RAB21 activity, as well as their induced binding to VAMP8 (or closest Drosophila homolog, Vamp7). MTMR13 is required for RAB21 activation, VAMP8 interaction and VAMP8 endolysosomal trafficking, defining a novel GEF‐Rab‐effector pathway. These results identify starvation‐responsive endosomal regulators and trafficking that tunes membrane demands with changing autophagy status.  相似文献   

2.
Myotubularins constitute a ubiquitous family of phosphatidylinositol (PI) 3-phosphatases implicated in several neuromuscular disorders. Myotubularin [myotubular myopathy 1 (MTM1)] PI 3-phosphatase is shown associated with early and late endosomes. Loss of endosomal phosphatidylinositol 3-phosphate [PI(3)P] upon overexpression of wild-type MTM1, but not a phosphatase-dead MTM1C375S mutant, resulted in altered early and late endosomal PI(3)P levels and rapid depletion of early endosome antigen-1. Membrane-bound MTM1 was directly complexed to the hVPS15/hVPS34 [vacuolar protein sorting (VPS)] PI 3-kinase complex with binding mediated by the WD40 domain of the hVPS15 (p150) adapter protein and independent of a GRAM-domain point mutation that blocks PI(3,5)P(2) binding. The WD40 domain of hVPS15 also constitutes the binding site for Rab7 and, as shown previously, contributes to Rab5 binding. In vivo, the hVPS15/hVPS34 PI 3-kinase complex forms mutually exclusive complexes with the Rab GTPases (Rab5 or Rab7) or with MTM1, suggesting a competitive binding mechanism. Thus, the Rab GTPases together with MTM1 likely serve as molecular switches for controlling the sequential synthesis and degradation of endosomal PI(3)P. Normal levels of endosomal PI(3)P and PI(3,5)P(2) are crucial for both endosomal morphology and function, suggesting that disruption of endosomal sorting and trafficking in skeletal muscle when MTM1 is mutated may be a key factor in precipitating X-linked MTM.  相似文献   

3.
Phosphatidylinositol 3-kinases (PI 3-kinases) regulate cellular functions through the 3'-phosphorylation of phosphatidylinositol (PI) and its derivatives. The PI 3-kinase product phosphatidylinositol 3-phosphate [PI(3)P] functions to recruit and activate effector proteins containing FYVE zinc finger domains. These proteins have various functions in endocytic membrane trafficking, cytoskeletal regulation and signal transduction. In order to understand the function of FYVE proteins, it is essential to study the formation, localisation, trafficking and turnover of PI(3)P. Here we review recent evidence that PI(3)P is formed on early endosomes through the activity of a PI 3-kinase which is recruited by the GTPase Rab5, and that the PI(3)P is subsequently internalised into intralumenal vesicles of multivesicular endosomes for turnover.  相似文献   

4.
Two different human diseases, X-linked myotubular myopathy and Charcot-Marie-Tooth disease, result from mutant MTM1 or MTMR2 lipid phosphatases. Although events involved in endosomal PI(3)P and PI(3,5)P(2) synthesis are well established and pivotal in receptor signaling and degradation, enzymes involved in phosphoinositide degradation and their roles in trafficking are incompletely characterized. Here, we dissect the functions of the MTM1 and MTMR2 myotubularins and establish how they contribute to endosomal PI(3)P homeostasis. By mimicking loss of function in disease through siRNA-mediated depletion of the myotubularins, excess PI(3)P accumulates on early (MTM1) and late (MTMR2) endosomes. Surprisingly, the increased PI(3)P blocks the egress of epidermal growth factor receptors from early or late endosomes, suggesting that the accumulation of signaling receptors in distinct endosomes may contribute to the unique disease etiologies when MTM1 or MTMR2 are mutant. We further demonstrate that direct myotubularin binding to the type III PI 3-kinase complex hVps34/hVps15 leads to phosphatase inactivation. The lipid kinase-phosphatase interaction also precludes interaction of the PI 3-kinase with Rab GTPase activators. Thus, unique molecular complexes control kinase and phosphatase activation and locally regulate PI(3)P on discrete endosome populations, thereby providing a molecular rationale for related human myo- and neuropathies.  相似文献   

5.
Muscles must maintain cell compartmentalization when remodeled during development and use. How spatially restricted adhesions are regulated with muscle remodeling is largely unexplored. We show that the myotubularin (mtm) phosphoinositide phosphatase is required for integrin-mediated myofiber attachments in Drosophila melanogaster, and that mtm-depleted myofibers exhibit hallmarks of human XLMTM myopathy. Depletion of mtm leads to increased integrin turnover at the sarcolemma and an accumulation of integrin with PI(3)P on endosomal-related membrane inclusions, indicating a role for Mtm phosphatase activity in endocytic trafficking. The depletion of Class II, but not Class III, PI3-kinase rescued mtm-dependent defects, identifying an important pathway that regulates integrin recycling. Importantly, similar integrin localization defects found in human XLMTM myofibers signify conserved MTM1 function in muscle membrane trafficking. Our results indicate that regulation of distinct phosphoinositide pools plays a central role in maintaining cell compartmentalization and attachments during muscle remodeling, and they suggest involvement of Class II PI3-kinase in MTM-related disease.  相似文献   

6.
G-protein coupled receptors activate heterotrimeric G proteins at the plasma membrane in which most of their effectors are intrinsically located or transiently associated as the external signal is being transduced. This paradigm has been extended to the intracellular compartments by studies in yeast showing that trafficking of Gα activates phosphatidylinositol 3-kinase (PI3K) at endosomal compartments, suggesting that vesicle trafficking regulates potential actions of Gα and possibly Gβγ at the level of endosomes. Here, we show that Gβγ interacts with Rab11a and that the two proteins colocalize at early and recycling endosomes in response to activation of lysophosphatidic acid (LPA) receptors. This agonist-dependent association of Gβγ to Rab11a-positive endosomes contributes to the recruitment of PI3K and phosphorylation of AKT at this intracellular compartment. These events are sensitive to the expression of a dominant-negative Rab11a mutant or treatment with wortmannin, suggesting that Rab11a-dependent Gβγ trafficking promotes the activation of the PI3K/AKT signaling pathway associated with endosomal compartments. In addition, RNA interference-mediated Rab11a depletion, or expression of a dominant-negative Rab11a mutant attenuated LPA-dependent cell survival and proliferation, suggesting that endosomal activation of the PI3K/AKT signaling pathway in response to Gβγ trafficking, via its interaction with Rab11, is a relevant step in the mechanism controlling these fundamental events.  相似文献   

7.
A marquee feature of the powerful human pathogen Mycobacterium tuberculosis is its macrophage parasitism. The intracellular survival of this microorganism rests upon its ability to arrest phagolysosome biogenesis, avoid direct cidal mechanisms in macrophages, and block efficient antigen processing and presentation. Mycobacteria prevent Rab conversion on their phagosomes and elaborate glycolipid and protein trafficking toxins that interfere with Rab effectors and regulation of specific organellar biogenesis in mammalian cells. One of the major Rab effectors affected in this process is the type III phosphatidylinositol 3-kinase hVPS34 and its enzymatic product phosphatidylinositol 3-phosphate (PI3P), a regulatory lipid earmarking organellar membranes for specific trafficking events. PI3P is also critical for the process of autophagy, recently recognized as an effector of innate and adaptive immunity. Induction of autophagy by physiological, pharmacological or immunological signals, including the major antituberculosis Th1 cytokine IFN-gamma and its downstream effector p47 GTPase LRG-47, can overcome mycobacterial phagosome maturation block and inhibit intracellular M. tuberculosis survival. This review summarizes the findings centred around the PI3P-nexus where the mycobacterial phagosome maturation block and execution stages of autophagy intersect.  相似文献   

8.
The vacuolar protein sorting (VPS) pathway of Saccharomyces cerevisiae mediates transport of vacuolar protein precursors from the late Golgi to the lysosome-like vacuole. Sorting of some vacuolar proteins occurs via a prevacuolar endosomal compartment and mutations in a subset of VPS genes (the class D VPS genes) interfere with the Golgi-to-endosome transport step. Several of the encoded proteins, including Pep12p/Vps6p (an endosomal target (t) SNARE) and Vps45p (a Sec1p homologue), bind each other directly [1]. Another of these proteins, Vac1p/Pep7p/Vps19p, associates with Pep12p and binds phosphatidylinositol 3-phosphate (PI(3)P), the product of the Vps34 phosphatidylinositol 3-kinase (PI 3-kinase) [1] [2]. Here, we demonstrate that Vac1p genetically and physically interacts with the activated, GTP-bound form of Vps21p, a Rab GTPase that functions in Golgi-to-endosome transport, and with Vps45p. These results implicate Vac1p as an effector of Vps21p and as a novel Sec1p-family-binding protein. We suggest that Vac1p functions as a multivalent adaptor protein that ensures the high fidelity of vesicle docking and fusion by integrating both phosphoinositide (Vps34p) and GTPase (Vps21p) signals, which are essential for Pep12p- and Vps45p-dependent targeting of Golgi-derived vesicles to the prevacuolar endosome.  相似文献   

9.
The small GTPases Rab4, Rab5 and Rab7 are endosomal proteins which play important roles in the regulation of various stages of endosomal trafficking. Rab4 and Rab5 have both been localized to early endosomes and have been shown to control recycling and endosomal fusion, respectively. Rab7, a marker of the late endosomal compartment, is involved in the regulation of the late endocytic pathway. Here, we compare the role of Rab4, Rab5 and Rab7 in early and late endosomal trafficking in HeLa cells monitoring ligand uptake, recycling and degradation. Expression of the Rab4 dominant negative mutant (Rab4AS22N) leads to a significant reduction in both recycling and degradation while, as expected, Rab7 mutants exclusively affect epidermal growth factor (EGF) and low density lipoprotein degradation. As also expected, expression of the dominant negative Rab5 mutant perturbs internalization kinetics and affects both recycling and degradation. Expression of Rab4WT and dominant positive mutant (Rab4AQ67L) changes dramatically the morphology of the transferrin compartment leading to the formation of membrane tubules. These transferrin positive tubules display swellings (varicosities) some of which are positive for early endosomal antigen-1 and contain EGF. We propose that the Rab4GTPase is important for the function of the early sorting endosomal compartment, affecting trafficking along both recycling and degradative pathways.  相似文献   

10.
Maturation of organelles in the endolysosomal pathway requires exchange of the early endosomal GTPase Rab5/Vps21 for the late endosomal Rab7/Ypt7. The Rab exchange depends on the guanine nucleotide exchange factor activity of the Mon1-Ccz1 heterodimer for Ypt7. Here we investigate vacuole binding and recycling of Mon1-Ccz1. We find that Mon1-Ccz1 is absent on vacuoles lacking the phosphatidic acid phosphatase Pah1, which also lack Ypt7, the phosphatidylinositol 3-kinase Vps34, and the lipid phosphatidylinositol 3-phosphate (PI3P). Interaction of Mon1-Ccz1 with wild-type vacuoles requires PI3P, as shown in competition experiments. We also find that Mon1 is released from vacuoles during the fusion reaction and its release requires its phosphorylation by the type 1 casein kinase Yck3. In contrast, Mon1 is retained on vacuoles lacking Yck3 or when Mon1 phosphorylation sites are mutated. Phosphorylation and release of Mon1 is restored with addition of recombinant Yck3. Together the results show that Mon1 is recruited to endosomes and vacuoles by PI3P and, likely after activating Ypt7, is phosphorylated and released from vacuoles for recycling.  相似文献   

11.
Phosphatidylinositol 3-phosphate [PI(3)P] is a phosphatidylinositol 3-kinase product whose localisation is restricted to the limiting membranes of early endosomes and to the internal vesicles of multivesicular bodies. In this study the intracellular distribution of PI(3)P was compared with those of another phosphoinositide and a number of endosomal proteins. Using a 2xFYVE probe specific for PI(3)P we found that PI(3)P is present in microdomains within the endosome membrane, whereas a phosphoinositide required for clathrin-mediated endocytosis, PI(4,5)P2, was only detected at the plasma membrane. The small GTPase Rab5 as well as the PI(3)P-binding proteins EEA1, SARA and CISK were found to be abundant within PI(3)P-containing endosomal microdomains. In contrast, another PI(3)P-binding protein, Hrs, was found concentrated in clathrin-coated endosomal microdomains with low levels of PI(3)P. While PI(3)P-containing microdomains could be readily distinguished on enlarged endosomes in cells transfected with a constitutively active Rab5 mutant, such domains could also be detected in endosomes of non-transfected cells. We conclude that the membranes of early endosomes consist of microdomains in which PI(3)P and specific proteins are concentrated. These microdomains may be necessary for the assembly of distinct multimolecular complexes that specify organelle identity, membrane trafficking and receptor signalling.David J. Gillooly and Camilla Raiborg contributed equally  相似文献   

12.
Phosphatidylinositol 3-phosphate (PI(3)P) plays an important role in insulin-stimulated glucose uptake. Insulin promotes the production of PI(3)P at the plasma membrane by a process dependent on TC10 activation. Here, we report that insulin-stimulated PI(3)P production requires the activation of Rab5, a small GTPase that plays a critical role in phosphoinositide synthesis and turnover. This activation occurs at the plasma membrane and is downstream of TC10. TC10 stimulates Rab5 activity via the recruitment of GAPEX-5, a VPS9 domain-containing guanyl nucleotide exchange factor that forms a complex with TC10. Although overexpression of plasma membrane-localized GAPEX-5 or constitutively active Rab5 promotes PI(3)P formation, knockdown of GAPEX-5 or overexpression of a dominant negative Rab5 mutant blocks the effects of insulin or TC10 on this process. Concomitant with its effect on PI(3)P levels, the knockdown of GAPEX-5 blocks insulin-stimulated Glut4 translocation and glucose uptake. Together, these studies suggest that the TC10/GAPEX-5/Rab5 axis mediates insulin-stimulated production of PI(3)P, which regulates trafficking of Glut4 vesicles.  相似文献   

13.
Activated receptor tyrosine kinases recruit many signaling proteins to activate downstream cell proliferation and survival pathways, including phosphatidylinositol 3-kinase (PI3K) consisting of a p85 regulatory protein and a p110 catalytic protein. We have recently shown the p85α protein also has in vitro GTPase activating protein (GAP) activity towards Rab5 and Rab4, small GTPases that regulate vesicle trafficking events for activated receptors. Expression of a GAP-defective mutant, p85R274A, resulted in sustained levels of activated platelet-derived growth factor receptors (PDGFRs) and enhanced downstream signaling. In this report we have characterized Rab5- and Rab4-mediated PDGFR trafficking in cells expressing wild type p85 and GAP-defective mutant p85R274A. Wild type p85 overexpressing cells had slower PDGFR trafficking consistent with enhanced GAP activity deactivating Rab5 and Rab4 to block their vesicle trafficking functions. Mutant p85R274A expression increased the internalization rate of PDGFRs, a Rab5-dependent process, without preventing PDGFR ubiquitination. Immunofluorescence studies further demonstrated that p85R274A-expressing cells showed Rab5 accumulation at intracellular locations. Pull-down and FRAP (fluorescence recovery after photobleaching) experiments indicate this is likely membrane-associated Rab5-GTP, sustained due to decreased p85 GAP activity for the p85R274A mutant. These cells also had substantial amounts of activated PDGFRs in Rab4-positive recycling endosomes, a compartment that usually contains primarily deactivated/dephosphorylated receptors. Our results suggest that the PDGFR-associated GAP activity of p85 regulates both Rab5 and Rab4 functions in cells to influence the movement of activated PDGFR through endosomal compartments. Disruption of this regulation by p85R274A expression impacts PDGFR phosphorylation/dephosphorylation, degradation kinetics and downstream signaling by altering the time receptors spend in specific intracellular endosomal compartments. These results demonstrate that the p85α protein is an important regulator of Rab-mediated PDGFR trafficking, which significantly impacts receptor signaling and degradation.  相似文献   

14.
Lipopolysaccharide (LPS) induces macrophage/monocyte activation and pro-inflammatory cytokines production by activating Toll-like receptor 4 (TLR-4) signaling. Rab GTPase 21 (Rab21) is a member of the Rab GTPase subfamily. In the present study, we show that LPS induced TLR4 and Rab21 association and endosomal translocation in murine bone marrow–derived macrophages (BMDMs) and primary human peripheral blood mononuclear cells (PBMCs). In BMDMs, shRNA-mediated stable knockdown of Rab21 inhibited LPS-induced expression and production of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α). Conversely, forced overexpression of Rab21 by an adenovirus construct potentiated LPS-induced IL-1β, IL-6 and TNF-α production in BMDMs. Further studies show that LPS-induced TLR4 endosomal traffic and downstream c-Jun and NFκB (nuclear factor-kappa B) activation were significantly inhibited by Rab21 shRNA, but intensified with Rab21 overexpression in BMDMs. Finally, in the primary human PBMCs, siRNA-induced knockdown of Rab21 significantly inhibited LPS-induced IL-1β, IL-6 and TNF-α production. Taken together, we suggest that Rab21 regulates LPS-induced pro-inflammatory responses by promoting TLR4 endosomal traffic and downstream signaling activation.  相似文献   

15.
VPS34 complex II (VPS34CII) is a 386-kDa assembly of the lipid kinase subunit VPS34 and three regulatory subunits that altogether function as a prototypical class III phosphatidylinositol-3-kinase (PI3K). When the active VPS34CII complex is docked to the cytoplasmic surface of endosomal membranes, it phosphorylates its substrate lipid (phosphatidylinositol, PI) to generate the essential signaling lipid phosphatidylinositol-3-phosphate (PI3P). In turn, PI3P recruits an array of signaling proteins containing PI3P-specific targeting domains (including FYVE, PX, and PROPPINS) to the membrane surface, where they initiate key cell processes. In endocytosis and early endosome development, net VPS34CII-catalyzed PI3P production is greatly amplified by Rab5A, a small G protein of the Ras GTPase superfamily. Moreover, VPS34CII and Rab5A are each strongly linked to multiple human diseases. Thus, a molecular understanding of the mechanism by which Rab5A activates lipid kinase activity will have broad impacts in both signaling biology and medicine. Two general mechanistic models have been proposed for small G protein activation of PI3K lipid kinases. 1) In the membrane recruitment mechanism, G protein association increases the density of active kinase on the membrane. And 2) in the allosteric activation mechanism, G protein allosterically triggers an increase in the specific activity (turnover rate) of the membrane-bound kinase molecule. This study employs an in vitro single-molecule approach to elucidate the mechanism of GTP-Rab5A-associated VPS34CII kinase activation in a reconstituted GTP-Rab5A-VPS34CII-PI3P-PX signaling pathway on a target membrane surface. The findings reveal that both membrane recruitment and allosteric mechanisms make important contributions to the large increase in VPS34CII kinase activity and PI3P production triggered by membrane-anchored GTP-Rab5A. Notably, under near-physiological conditions in the absence of other activators, membrane-anchored GTP-Rab5A provides strong, virtually binary on-off switching and is required for VPS34CII membrane binding and PI3P production.  相似文献   

16.
Autophagy is a vesicular trafficking pathway that regulates the degradation of aggregated proteins and damaged organelles. Initiation of autophagy requires several multiprotein signaling complexes, such as the ULK1 kinase complex and the Vps34 lipid kinase complex, which generates phosphatidylinositol 3-phosphate [PtdIns(3)P] on the forming autophagosomal membrane. Alterations in autophagy have been reported for various diseases, including myopathies. Here we show that skeletal muscle autophagy is compromised in mice deficient in the X-linked myotubular myopathy (XLMTM)-associated PtdIns(3)P phosphatase myotubularin (MTM1). Mtm1-deficient muscle displays several cellular abnormalities, including a profound increase in ubiquitin aggregates and abnormal mitochondria. Further, we show that Mtm1 deficiency is accompanied by activation of mTORC1 signaling, which persists even following starvation. In vivo pharmacological inhibition of mTOR is sufficient to normalize aberrant autophagy and improve muscle phenotypes in Mtm1 null mice. These results suggest that aberrant mTORC1 signaling and impaired autophagy are consequences of the loss of Mtm1 and may play a primary role in disease pathogenesis.  相似文献   

17.
Caspase 8 is a cysteine protease that initiates apoptotic signaling via the extrinsic pathway in a manner dependent upon association with early endosomes. Previously, we identified caspase 8 as an effector of migration, promoting motility in a manner dependent upon phosphorylation on Tyr-380 by Src family kinases and its subsequent association with Src homology 2 domain-containing proteins. Here we demonstrate the regulation of the small GTPase Rab5, which mediates early endosome formation, homotypic fusion, and maturation by caspase 8. Regulation requires the Tyr-380 phosphorylation site but not caspase proteolytic activity. Tyr-380 is essential for interaction with the Src homology 2 domains of p85alpha, a multifunctional adaptor for phosphatidylinositol 3-kinase, that possesses Rab-GAP activity. Interaction between caspase 8 and p85alpha promotes Rab5 GTP loading, alters endosomal trafficking, and results in the accumulation of Rab5-positive endosomes at the edge of the cell. Conversely, caspase 8-dependent GTP loading of Rab5 is overcome by increased expression of p85alpha in a Rab-GAP-dependent manner. Thus, we demonstrate a novel function for caspase 8 as a modulator of p85alpha Rab-GAP activity and endosomal trafficking.  相似文献   

18.
The mechanistic target of rapamycin (mTOR) complex 1 is regulated by small GTPase activators and localization signals. We examine here the role of the small GTPase Rab5 in the localization and activation of TORC1 in yeast and mammalian cells. Rab5 mutants disrupt mTORC1 activation and localization in mammalian cells, whereas disruption of the Rab5 homolog in yeast, Vps21, leads to decreased TORC1 function. Additionally, regulation of PI(3)P synthesis by Rab5 and Vps21 is essential for TORC1 function in both contexts.  相似文献   

19.
The p85α protein is best known as the regulatory subunit of class 1A PI3Ks (phosphoinositide 3-kinases) through its interaction, stabilization and repression of p110-PI3K catalytic subunits. PI3Ks play multiple roles in the regulation of cell survival, signalling, proliferation, migration and vesicle trafficking. The present review will focus on p85α, with special emphasis on its important roles in the regulation of PTEN (phosphatase and tensin homologue deleted on chromosome 10) and Rab5 functions. The phosphatidylinositol-3-phosphatase PTEN directly counteracts PI3K signalling through dephosphorylation of PI3K lipid products. Thus the balance of p85α-p110 and p85α-PTEN complexes determines the signalling output of the PI3K/PTEN pathway, and under conditions of reduced p85α levels, the p85α-PTEN complex is selectively reduced, promoting PI3K signalling. Rab5 GTPases are important during the endocytosis, intracellular trafficking and degradation of activated receptor complexes. The p85α protein helps switch off Rab5, and if defective in this p85α function, results in sustained activated receptor tyrosine kinase signalling and cell transformation through disrupted receptor trafficking. The central role for p85α in the regulation of PTEN and Rab5 has widened the scope of p85α functions to include integration of PI3K activation (p110-mediated), deactivation (PTEN-mediated) and receptor trafficking/signalling (Rab5-mediated) functions, all with key roles in maintaining cellular homoeostasis.  相似文献   

20.
Trypanosoma cruzi can infect and replicate in macrophages. During invasion, T. cruzi interacts with different macrophage receptors to induce its own phagocytosis. However, the nature of those receptors and the molecular mechanisms involved are poorly understood. In this study, we demonstrate that T. cruzi metacyclic trypomastigotes but not epimastigotes were able to induce Rab5 activation and binding to the early endosomes in peritoneal macrophages. In this process, active Rab5 colocalized with parasites in the phagosome and with the Rab5A effector molecule early endosomal antigen 1. Phagosome formation and T. cruzi internalization were inhibited in Raw 264.7 macrophages expressing a dominant-negative form of Rab5 [(S34N)Rab5]. Using T. cruzi membrane extracts, we verified that the Rab5 activation depends on the interaction between parasite surface molecules and macrophages surface molecule. In addition, during infection of macrophages, phosphatidylinositol 3-kinase (PI3K) pathway was activated. Assays carried out using a selective PI3K inhibitor (LY294002) showed that the PI3K activation is essential for Rab5 activation by T. cruzi infection and for the entrance and intracellular replication of T. cruzi in macrophages. Moreover, using macrophages from knockout mice, we found that activation of Rab5, fusion of early endosomes and phagocytosis induced by T. cruzi infection involved Toll-like receptor (TLR)2 but were independent of TLR4 receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号