首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
《Cell Stem Cell》2021,28(9):1516-1532.e14
  1. Download : Download high-res image (225KB)
  2. Download : Download full-size image
  相似文献   

2.
3.
Although there are published studies of proline biochemistry and nutrition in cultured cells and postnatal animals, little is known about proline metabolism and function in the conceptus (embryo/fetus, associated placental membranes, and fetal fluids). Because of the invasive nature of biochemical research on placental and fetal growth, animal models are often used to test hypotheses of biological importance. Recent evidence from studies with pigs and sheep shows that proline is a major substrate for polyamine synthesis via proline oxidase, ornithine aminotransferase, and ornithine decarboxylase in placentae. Both porcine and ovine placentae have a high capacity for proline catabolism and polyamine production. In addition, allantoic and amniotic fluids contain enzymes to convert proline into ornithine, which is delivered through the circulation to placental tissues. There is exquisite metabolic coordination among integrated pathways that support highest rates of polyamine synthesis and concentrations in placentae during early gestation when placental growth is most rapid. Interestingly, reduced placental and fetal growth are associated with reductions in placental proline transport, proline oxidase activity, and concentrations of polyamines in gestating dams with either naturally occurring or malnutrition-induced growth retardation. Conversely, increasing proline availability in maternal plasma through nutritional or pharmacological modulation in pigs and sheep enhances concentrations of proline and polyamines in placentae and fetal fluids, as well as fetal growth. These novel findings suggest an important role for proline in conceptus metabolism, growth and development, as well as a potential treatment for intrauterine growth restriction, which is a significant problem in both human medicine and animal agriculture.  相似文献   

4.
Explants of small intestinal tissue have been cultured from fetal and young rats (from 13-day fetuses to 3-week-old rats). Growth of morphologically typical epithelial cells was obtained from explants of tissue from 14–20 day fetuses. Optimal growth was obtained using tissue from 17-day fetuses with outgrowth from the explant being observed 1-day after explant. Eighty per cent of explants developed epithelial growth by 11 days in culture. Initially, the epithelial outgrowth showed no morphological evidence of differentiation but after 5–10 days in culture differentiation into goblet or elongated cells with alkaline phosphatase activity occurred. Cells with brush borders and goblet cells were identified using electron microscopy. No differentiation occurred if the explant was removed even though growth continued.It was very difficult to culture tissue from fetuses older than 20 days' gestation, and when small intestine of 18–20-day fetuses was divided into two parts (proximal and distal) and cultured separately, growth of epithelial cells from explants of the proximal segment was less successful than that of the distal segment, indicating that the growth ability of these epithelial cells in vitro was closely related to tissue maturation in vivo. In contrast to the apparent relationship between fetal age and successful growth of intestinal epithelial cells, squamous epithelial cells of the esophagus could be grown from explants of 14-day fetus through newborn and 3-week-old rats.  相似文献   

5.
Peptide YY as a growth factor for intestinal epithelium   总被引:2,自引:0,他引:2  
Mannon PJ 《Peptides》2002,23(2):383-388
Peptide YY is an abundant distal gut hormone that may play a significant role in intestinal epithelial proliferation. Gut epithelial cells express specific receptors for PYY, PYY induces proliferation in intestinal cells in vivo and in vitro, and the Y1 receptor subtype couples to mitogenic signaling pathways. In addition to proposed physiologic effects on gut mucosal maintenance, PYY proliferative effects may be hypothesized to contribute to pathophysiologic consequences of stimulated growth.  相似文献   

6.
7.
8.
The maternal nutritional and metabolic environment is critical in determining not only the reproductive success but also the long-term health and viability of the offspring. Changes in maternal diet at defined stages of gestation coincident with different stages of development can have pronounced effects on organ and tissue function in later life. This includes adipose tissue for which differential effects are observed between brown and white adipose tissues. One early, critical window of organ development in the ruminant relates to the period covering uterine attachment, or implantation, and rapid placental growth. During this period, there is pronounced cell division within developing organelles in many fetal tissues, leading to their structural development. In sheep, a 50% global reduction in caloric intake over this specific period profoundly affects placental growth and morphology, resulting in reduced placentome weight. This occurs in conjunction with a lower capacity to inactivate maternal cortisol through the enzyme 11β-hydroxysteroid dehydrogenase type 2 in response to a decrease in maternal plasma cortisol in early gestation. The birth weight of the offspring is, however, unaffected by this dietary manipulation and, although they possess more fat, this adaptation does not persist into adulthood when they become equally obese as those born to control fed mothers. Subsequently, after birth, further changes in fat development occur which impact on both glucocorticoid action and inflammatory responses. These adaptations can include changes in the relative populations of both brown and white adipocytes for which prolactin acting through its receptor appears to have a prominent role. Earlier when in utero nutrient restricted (i.e. between early-to-mid gestation) offspring are exposed to an obesogenic postnatal environment; they exhibit an exaggerated insulin response, which is accompanied by a range of amplified and thus, adverse, physiological or metabolic responses to obesity. These types of adaptations are in marked contrast to the effect of late gestational nutrient restriction, which results in reduced fat mass at birth. As young adults, however, fat mass is increased and, although basal insulin is unaffected, these offspring are insulin resistant. In conclusion, changes in nutrient supply to either the mother and/or her fetus can have profound effects on a range of metabolically important tissues. These have the potential to either exacerbate, or protect from, the adverse effects of later obesity and accompanying complications in the resulting offspring.  相似文献   

9.
The morphogenesis of conjoined twins is incompletely understood. We therefore conducted a postmortem study of dicephalus dibrachii dipus conjoined twins. The twins were born without pertinent history or prenatal diagnosis at 38 weeks and lived for several hours. External genitalia were female and partly duplicated; a caudal appendage was present in the thoracolumbar region. The heart and liver were shared and exhibited major abnormalities in configuration. Four lungs, three kidneys and adrenal glands, and two spleens were identified; biliary and upper gastrointestinal tracts appeared as mirror images. From these findings, we postulate three major sets of consequences arising from the anatomical disposition of the twin notochords ("paleoaxes"). 1) The degree of convergence/divergence of craniocaudal paleoaxes is variable. Convergences are maximal in the upper thoracic and sacral regions, where duplication of organs in minimal because of interaction aplasia. 2) In the horizontal plane, paleoaxes are sufficiently divergent to produce a degree of twin expression posteriorly, whereas anteriorly they converge to form a single, anterior, midline "neoaxis." Interposed between these zones of paleoaxial and neoaxial expression are areas of variable interaction aplasia. 3) The left twin was in situs solitus; the right twin was in situs inversus in a manner resembling polysplenia.  相似文献   

10.
11.
12.
13.
14.
Mouse salivary epithelium cannot undergo branching morphogenesis in the absence of the surrounding mesenchyme. To clarify the nature of the mesenchymal influence on the epithelium, we have investigated the culture conditions in which the epithelium could normally branch in the absence of mesenchymal cells. Combination of basement-membrane-like substratum (Matrigel) and epidermal growth factor (EGF) could substitute for the mesenchyme, the epithelium showing typical branching morphogenesis. Transforming growth factor alpha had the same effect as EGF. Matrigel plus basic fibroblast growth factor or transforming growth factor beta 1 and collagen gel plus EGF were not sufficient to support the branching of the epithelium. These results clearly reveal that the role of mesenchyme in salivary morphogenesis is both to provide the epithelium with an appropriate substratum and to accelerate growth of the epithelium.  相似文献   

15.
Cell morphogenesis encompasses all processes required to establish a three-dimensional cell shape. Cells acquire the architecture specific to their developmental context by using the spatial information provided by internal or external cues. As a response to these signals, cells become reorganized and establish functionally distinct subcellular domains that ultimately lead to morphological changes. In its simplest form, cell morphogenesis results in the establishment of asymmetry along one axis, a cell polarity. Although cell polarity has been studied intensively in budding yeast and epithelial cells, little is known about more complex modes of cell morphogenesis involving multiple axes. In this review we compare the regulation of cell morphogenesis of different genetically well-characterized cell types in Arabidopsis thaliana. BioEssays 20:20–29, 1998. © 1998 John Wiley & Sons, Inc.  相似文献   

16.
17.
18.
Using intestinal Caco-2 cells, we previously showed that assembly of cytoskeleton is required for monolayer barrier function, but the underlying mechanisms remain poorly understood. Because the -isoform of PKC is present in wild-type (WT) intestinal cells, we hypothesized that PKC- is crucial for changes in cytoskeletal and barrier dynamics. We have created the first multiple sets of gastrointestinal cell clones transfected with varying levels of cDNA to stably inhibit native PKC- (antisense, AS; dominant negative, DN) or to express its activity (sense). We studied transfected and WT Caco-2 cells. First, relative to WT cells, AS clones underexpressing PKC- showed monolayer injury as indicated by decreased native PKC- activity, reduced tubulin phosphorylation, increased tubulin disassembly (decreased polymerized and increased monomeric pools), reduced architectural integrity of microtubules, reduced stability of occludin, and increased barrier hyperpermeability. In these AS clones, PKC- was substantially reduced in the particulate fractions, indicating its inactivation. In WT cells, 82-kDa PKC- was constitutively active and coassociated with 50-kDa tubulin, forming an endogenous PKC-/tubulin complex. Second, DN transfection to inhibit the endogenous PKC- led to similar destabilizing effects on monolayers, including cytoskeletal hypophosphorylation, depolymerization, and instability as well as barrier disruption. Third, stable overexpression of PKC- led to a mostly cytosolic distribution of -isoform (<10% in particulate fractions), indicating its inactivation. In these sense clones, we also found disruption of occludin and microtubule assembly and increased barrier dysfunction. In conclusion, 1) PKC- isoform is required for changes in the cytoskeletal assembly and barrier permeability in intestinal monolayers, and 2) the molecular event underlying this novel biological effect of PKC- involves changes in phosphorylation and/or assembly of the subunit components of the cytoskeleton. The ability to alter the cytoskeletal and barrier dynamics is a unique function not previously attributed to PKC-. microtubules; tubulin; occludin; epithelial barrier permeability; protein kinase C isoform  相似文献   

19.
Most human cancers arise either from epithelial cells or their progenitors. Epithelial cells possess a distinctive apical–basal polarity and loss of polarity is frequently assumed to be a common feature of cancer progression. In particular, cancer cell dissemination to ectopic sites, and metastatic growth at those sites, is often considered to require a mesenchymal transition in which the transformed epithelial cells lose their apical–basal polarity. However, many cancers retain epithelial characteristics, and until recently there has been little conclusive evidence for an involvement of the cell polarity machinery in tumour growth and metastasis. In this article, we discuss evidence that polarity proteins can be potent invasion suppressors but that loss of epithelial character is not essential either for tumour growth and invasion, or metastatic colonization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号