首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent evidence suggests that breast cancer is one of the most common forms of malignancy in females, and metastasis from the primary cancer site is the main cause of death. Aromatic (ar)‐turmerone is present in Curcuma longa and is a common remedy and food. In the present study, we investigated the inhibitory effects of ar‐turmerone on expression and enzymatic activity levels of 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA)‐induced matrix metalloproteinase (MMP)‐9 and cyclooxygenaase‐2 (COX‐2) in breast cancer cells. Our data indicated that ar‐turmerone treatment significantly inhibited enzymatic activity and expression of MMP‐9 and COX‐2 at non‐cytotoxic concentrations. However, the expression of tissue inhibitor of metalloproteinase (TIMP)‐1, TIMP‐2, MMP‐2, and COX‐1 did not change upon ar‐turmerone treatment. We found that ar‐turmerone inhibited the activation of NF‐κB, whereas it did not affect AP‐1 activation. Moreover, The ChIP assay revealed that in vivo binding activities of NF‐κB to the MMP‐9 and COX‐2 promoter were significantly inhibited by ar‐turmerone. Our data showed that ar‐turmerone reduced the phosphorylation of PI3K/Akt and ERK1/2 signaling, whereas it did not affect phosphorylation of JNK or p38 MAPK. Thus, transfection of breast cancer cells with PI3K/Akt and ERK1/2 siRNAs significantly decreased TPA‐induced MMP‐9 and COX‐2 expression. These results suggest that ar‐turmerone suppressed the TPA‐induced up‐regulation of MMP‐9 and COX‐2 expression by blocking NF‐κB, PI3K/Akt, and ERK1/2 signaling in human breast cancer cells. Furthermore, ar‐turmerone significantly inhibited TPA‐induced invasion, migration, and colony formation in human breast cancer cells. J. Cell. Biochem. 113: 3653–3662, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
3.
Human non‐small cell lung cancer (NSCLC) is one of the leading causes of cancer deaths worldwide. Estrogenic signals have been suggested to be important for the growth and metastasis of NSCLC cells. Our present data showed that estrogen‐related receptor alpha (ERRα), while not ERRβ or ERRγ, was significantly elevated in NSCLC cell lines as compared with that in normal bronchial epithelial cell line BEAS‐2B. The expression of ERRα in clinical NSCLC tissues was significantly greater than that in their matched normal adjacent tissues. Over expression of ERRα can trigger the proliferation, migration, and invasion of NSCLC cells, while si‐ERRα or ERRα inhibitor showed opposite effects. ERRα can increase the mRNA and protein expression of IL‐6, while not IL‐8, IL‐10, IL‐22, VEGF, TGF‐β, or TNF‐α, in NSCLC cells. Silence of IL‐6 attenuated ERRα induced proliferation and cell invasion. Furthermore, our data revealed the inhibition of NF‐κB, while not ERK1/2 or PI3K/Akt, abolished ERRα induced production of IL‐6. This might be due to that overexpression of ERRα can increase the expression and nuclear translocation of p65 in NSCLC cells. Collectively, our data showed that activation of NF‐κB/IL‐6 is involved in ERRα induced migration and invasion of NSCLC cells. It suggested that ERRα might be a potential target for NSCLC treatment.  相似文献   

4.
Chondrosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. Interleukin-8 (IL-8), a chemokine with a defining CXC amino acid motif, is known to possess tumorigenic and proangiogenic properties. Over-expression of IL-8 has been detected in many human tumors. However, the effects of IL-8 in migration and integrin expression in chondrosarcoma cells are largely unknown. In this study, we found that IL-8 increased the migration and the expression of αvβ3 integrin in human chondrosarcoma cells. Activations of phosphatidylinositol 3-kinase (PI3K), Akt, and AP-1 pathways after IL-8 treatment were demonstrated, and IL-8-induced expression of integrin and migration activity was inhibited by the specific inhibitor and mutant of PI3K, Akt, and AP-1 cascades. Taken together, our results indicated that IL-8 enhances the migration of chondrosarcoma cells by increasing αvβ3 integrin expression through the PI3K/Akt/AP-1 signal transduction pathway.  相似文献   

5.
Chondrosarcoma is a type of highly malignant tumour with a potent capacity to invade locally and cause distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. Tumour necrosis factor (TNF)‐α is a key cytokine involved in inflammation, immunity, cellular homeostasis and tumour progression. Integrins are the major adhesive molecules in mammalian cells and have been associated with metastasis of cancer cells. However, the effects of TNF‐α in migration and integrin expression in chondrosarcoma cells are largely unknown. In this study, we found that TNF‐α increased the migration and the expression of αvβ3 integrin in human chondrosarcoma cells. Activations of MAPK kinase (MEK), extracellular signal‐regulating kinase (ERK) and nuclear factor‐κB (NF‐κB) pathways after TNF‐α treatment were demonstrated, and TNF‐α‐induced expression of integrin and migration activity was inhibited by the specific inhibitor and mutant of MEK, ERK and NF‐κB cascades. Taken together, our results indicated that TNF‐α enhances the migration of chondrosarcoma cells by increasing αvβ3 integrin expression through the MEK/ERK/NF‐κB signal transduction pathway. J. Cell. Physiol. 226: 792–799, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Chondrosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. Integrins are the major adhesive molecules in mammalian cells and have been associated with metastasis of cancer cells. Insulin-like growth factor-I (IGF)-I plays an important role in regulating cell growth, proliferation, survival, and metabolism. However, the effects of IGF-I in migration and integrin expression in chondrosarcoma cells are largely unknown. In this study, we found that IGF-I increased the migration and the expression of α5β1 integrin in human chondrosarcoma cells. Pretreatment of cells with IGF-I receptor antibody reduced IGF-I-induced cell migration and integrin expression. Activations of phosphatidylinositol 3-kinase (PI3K), Akt, and nuclear factor-κB (NF-κB) pathways after IGF-I treatment were demonstrated, and IGF-I-induced expression of integrin and migration activity was inhibited by the specific inhibitor and mutant of PI3K, Akt, and NF-κB cascades. Taken together, our results indicated that IGF-I enhances the migration of chondrosarcoma cells by increasing α5β1 integrin expression through the IGF-I receptor/PI3K/Akt/NF-κB signal transduction pathway.  相似文献   

7.
Invasion of tumor cells is the primary cause of therapeutic failure in malignant chondrosarcomas treatment. Receptor activator of nuclear factor‐κB ligand (RANKL) and its receptor, RANK, play a key roles in osteoclastogenesis and tumor metastasis. We found that the RANKL and RANK expression in human chondrosarcoma tissues was higher than that in normal cartilage. We also found that RANKL directed the migration and increased cell surface expression of β1 integrin in human chondrosarcoma cells (JJ012 cells). Pretreatment of JJ012 cells with MAPK kinase (MEK) inhibitors, PD98059 or U0126, inhibited the RANKL‐induced migration and integrin expression. Stimulation of cells with RANKL increased the phosphorylation of MEK and extracellular signal‐regulating kinase (ERK). In addition, NF‐κB inhibitor (PDTC) or IκB protease inhibitor (TPCK) also inhibited RANKL‐induced cells migration and integrin up‐regulation. Taken together, these results suggest that the RANKL acts through MEK/ERK, which in turn activates IKKα/β and NF‐κB, resulting in the activation of β1 integrin and contributing to the migration of human chondrosarcoma cells. J. Cell. Biochem. 111: 138–147, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Thrombin is a multifunctional protease that can activate hemostasis and coagulation through the cleavage of fibrinogen to form fibrin clots. Thrombin also plays a crucial role in migration and metastasis of human cancer cells. However, the effect of thrombin on migration activity in human chondrosarcoma cells is mostly unknown. Here, we found that thrombin increased the migration and expression of matrix metalloproteinase (MMP)‐2 and MMP‐13 in human chondrosarcoma cells (JJ012 and SW1353 cells). By using pharmacological inhibitors or activators or genetic inhibition by the protease‐activated receptor (PAR), we found that the PAR1 and PAR4 receptor but not PAR3 receptor are involved in thrombin‐mediated cell migration and MMPs expression. Thrombin‐mediated migration and MMPs up‐regulation was attenuated by phospholipase C (PLC), protein kinase C, and c‐Src inhibitor. Activations of PLCβ, PKCα, c‐Src, and NF‐κB pathways after thrombin treatment was demonstrated, and thrombin‐induced MMPs expression and migration activity was inhibited by the specific inhibitors and mutants of PLC, PKC, c‐Src, and NF‐κB cascades. Taken together, our results indicated that thrombin enhances the migration of chondrosarcoma cells by increasing MMP‐2 and MMP‐13 expression through the PAR/PLC/PKCα/c‐Src/NF‐κB signal transduction pathway. J. Cell. Physiol. 223:737–745, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
10.
Chondrosarcoma is a type of highly malignant tumor with a potent capacity for local invasion and causing distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. Hepatocyte growth factor (HGF) has been demonstrated to stimulate cancer proliferation, migration, and metastasis. However, the effect of HGF on migration activity of human chondrosarcoma cells is not well known. Here, we found that human chondrosarcoma tissues demonstrated significant expression of HGF, which was higher than that in normal cartilage. We also found that HGF increased the migration and expression of matrix metalloproteinase (MMP)-2 in human chondrosarcoma cells. c-Met inhibitor and siRNA reduced HGF-increased cell migration and MMP-2 expression. HGF treatment resulted in activation of the phosphatidylinositol 3′-kinase (PI3K)/Akt/PKCδ/NF-κB pathway, and HGF-induced expression of MMP-2 and cell migration was inhibited by specific inhibitors or siRNA-knockdown of PI3K, Akt, PKCδ, and NF-κB cascades. Taken together, our results indicated that HGF enhances migration of chondrosarcoma cells by increasing MMP-2 expression through the c-Met receptor/PI3K/Akt/PKCδ/NF-κB signal transduction pathway.  相似文献   

11.
Tumor malignancy is associated with several features such as proliferation ability and frequency of metastasis. Connective tissue growth factor (CTGF), a secreted protein that binds to integrins, modulates the invasive behavior of certain human cancer cells. However, the effect of CTGF on migration activity in human chondrosarcoma cells is mostly unknown. Here we found that CTGF increased the migration and expression of matrix metalloproteinase (MMP)‐13 in human chondrosarcoma cells (JJ012 cells). RGD peptide, αvβ3 monoclonal antibody (mAb) and MAPK kinase (MEK) inhibitors (PD98059 and U0126) but not RAD peptide inhibited the CTGF‐induced increase of the migration and MMP‐13 up‐regulation of chondrosarcoma cells. CTGF stimulation increased the phosphorylation of focal adhesion kinase (FAK) and extracellular signal‐regulated kinase (ERK). In addition, treatment of JJ012 cells with NF‐κB inhibitor (PDTC) or IκB protease inhibitor (TPCK) inhibited CTGF‐induced cell migration and MMP‐13 up‐regulation. Stimulation of JJ012 cells with CTGF also induced IκB kinase α/β (IKK α/β) phosphorylation, IκBα phosphorylation, p65 Ser536 phosphorylation, and κB‐luciferase activity. The CTGF‐mediated increases in κB‐luciferase activities were inhibited by RGD, PD98059, U0126 or FAK, and ERK2 mutant. Taken together, our results indicated that CTGF enhances the migration of chondrosarcoma cells by increasing MMP‐13 expression through the αvβ3 integrin, FAK, ERK, and NF‐κB signal transduction pathway. J. Cell. Biochem. 107: 345–356, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Hypothalamic neuropeptides, including neuropeptide Y (NPY) and proopiomelanocortin (POMC), have been found to control the appetite‐suppressing effect of amphetamine (AMPH). In this study, we have examined whether dopamine receptor (DAR), phosphatidylinositol 3‐kinase (PI3K) and nuclear factor‐kappaB (NF‐κB) are involved in AMPH's action. We administered AMPH to rats once a day for 4 days and assessed and compared changes in hypothalamic NPY, melanocortin receptor 4 (MC4R), PI3K, pAkt and NF‐κB expression. We found that the inhibition of DAR increased NPY, but decreased MC4R, PI3K and NF‐κB expression, compared with AMPH‐treated rats. Moreover, MC4R, PI3K, pAkt and NF‐κB increased with the maximum response on Day 2, which was consistent with the response of feeding behavior, but was opposite to the expression of NPY. Furthermore, we found that the intracerebroventricular infusion of the PI3K inhibitor or NF‐κB antisense could attenuate AMPH‐induced anorexia, and partially reverse the expression of NPY, MC4R, PI3K, Akt and NF‐κB back toward a normal level. We, therefore, suggest that DAR–PI3K–NF‐κB signaling in the hypothalamus plays functional roles in the modulation of NPY and POMC neurotransmissions and in the control of AMPH‐evoked appetite suppression.  相似文献   

13.
The macrophage migration-inhibitory factor (MIF) is a pro-inflammatory cytokine first known for its effect on macrophage migration and activation. Recent studies have shown that MIP plays a critical role in tumor growth, angiogenesis, and metastasis. Chondrosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. However, the effects of MIF on human chondrosarcoma cells are largely unknown. In the present study, MIF was found to increase the migration and the expression of αvβ3 integrin in human chondrosarcoma cells. The phosphatidylinositol 3-kinase (PI3K), Akt, and NF-κB pathways were activated by MIF treatment, and the MIF-induced expression of integrin and migration activity were inhibited by the specific inhibitors and mutant forms of PI3K, Akt, and NF-κB cascades. In addition, migration-prone sublines demonstrated that increased cell migration ability was correlated with increased expression of MIF and αvβ3 integrin. Taken together, our results indicate that MIF enhanced the migration of the chondrosarcoma cells by increasing αvβ3 integrin expression through the PI3K/Akt/NF-κB signal transduction pathway.  相似文献   

14.
Chondrosarcoma is a primary malignant bone cancer, with a potent capacity to invade locally and cause distant metastasis; it has a poor prognosis and shows a predilection for metastasis to the lungs. Brain derived neurotrophic factor (BDNF) is a small-molecule protein from the neurotrophin family of growth factors that is associated with the disease status and outcomes of cancers. However, the effect of BDNF on migration activity in human chondrosarcoma cells is mostly unknown. Here, we found that human chondrosarcoma tissues showed significant expression of BDNF, which was higher than that in normal cartilage and primary chondrocytes. We also found that BDNF increased the migration and expression of β5 integrin in human chondrosarcoma cells. In addition, knockdown of BDNF expression markedly inhibited migratory activity. BDNF-mediated migration and β5 integrin up-regulation were attenuated by antibody, inhibitor, or siRNA against the TrkB receptor. Pretreatment of chondrosarcoma cells with PI3K, Akt, and NF-κB inhibitors or mutants also abolished BDNF-promoted migration and integrin expression. The PI3K, Akt, and NF-κB signaling pathway was activated after BDNF treatment. Taken together, our results indicate that BDNF enhances the migration of chondrosarcoma by increasing β5 integrin expression through a signal transduction pathway that involves the TrkB receptor, PI3K, Akt, and NF-κB. BDNF thus represents a promising new target for treating chondrosarcoma metastasis.  相似文献   

15.
Tumor malignancy is associated with several cellular properties including proliferation and ability to metastasize. Endothelin-1 (ET-1) the most potent vasoconstrictor plays a crucial role in migration and metastasis of human cancer cells. We found that treatment of human chondrosarcoma (JJ012 cells) with ET-1 increased migration and expression of matrix metalloproteinase (MMP)-13. ET-1-mediated cell migration and MMP-13 expression were reduced by pretreatment with inhibitors of focal adhesion kinase (FAK), phosphatidylinositol 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR), as well as the NF-κB inhibitor and the IκB protease inhibitor. In addition, ET-1 treatment induced phosphorylation of FAK, PI3K, AKT, and mTOR, and resulted in increased NF-κB-luciferase activity that was inhibited by a specific inhibitor of PI3K, Akt, mTOR, and NF-κB cascades. Taken together, these results suggest that ET-1 activated FAK/PI3K/AKT/mTOR, which in turn activated IKKα/β and NF-κB, resulting in increased MMP-13 expression and migration in human chondrosarcoma cells.  相似文献   

16.
Bradykinin (BK) is an inflammatory mediator, and shows elevated levels in regions of severe injury and inflammatory diseases. BK has recently been shown to be involved in carcinogenesis and cancer progression. In this study, we found that BK increased the migration and the expression of α2β1 integrin in human chondrosarcoma cells. We also found that human chondrosarcoma tissues had significantly higher expression of the B1 and B2 receptors comparing to normal cartilage. BK‐mediated migration and integrin up‐regulation was attenuated by B1 and B2 BK receptor siRNA or antagonist. Activations of phospholipase C (PLC), protein kinase Cδ (PKCδ), and NF‐κB pathways after BK treatment was demonstrated, and BK‐induced integrin expression and migration activity was inhibited by the specific inhibitor of PLC, PKCδ, and NF‐κB cascades. Taken together, our results indicated that BK enhances the migration of chondrosarcoma cells by increasing α2β1 integrin expression through the BK receptors/PLC/PKCδ/NF‐κB signal transduction pathway. J. Cell. Biochem. 109: 82–92, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Tumor necrosis factor‐α (TNF‐α) is a pleiotropic cytokine produced by activated macrophages. IL‐6 is a multifunctional cytokine that plays a central role in both innate and acquired immune responses. We investigated the signaling pathway involved in IL‐6 production stimulated by TNF‐α in cultured myoblasts. TNF‐α caused concentration‐dependent increases in IL‐6 production. TNF‐α‐mediated IL‐6 production was attenuated by focal adhesion kinase (FAK) mutant and siRNA. Pretreatment with phosphatidylinositol 3‐kinase inhibitor (PI3K; Ly294002 and wortmannin), Akt inhibitor, NF‐κB inhibitor (pyrrolidine dithiocarbamate, PDTC), and IκB protease inhibitor (L ‐1‐tosylamido‐2‐phenyl phenylethyl chloromethyl ketone, TPCK) also inhibited the potentiating action of TNF‐α. TNF‐α increased the FAK, PI3K, and Akt phosphorylation. Stimulation of myoblasts with TNF‐α activated IκB kinase α/β (IKKα/β), IκBα phosphorylation, p65 phosphorylation, and κB‐luciferase activity. TNF‐α mediated an increase of κB‐luciferase activity which was inhibited by Ly294002, wortmannin, Akt inhibitor, PDTC and TPCK or FAK, PI3K, and Akt mutant. Our results suggest that TNF‐α increased IL‐6 production in myoblasts via the FAK/PI3K/Akt and NF‐κB signaling pathway. J. Cell. Physiol. 223: 389–396, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Chondrosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. CCN3, also called nephroblastoma overexpressed gene (NOV), regulates proliferation and differentiation of cancer cells. However, the effect of CCN3 on migration activity in human chondrosarcoma cells is mostly unknown. Here, we found that CCN3 increased the migration and expression of matrix metalloproteinase (MMP)-13 in human chondrosarcoma cells (JJ012 cells). αvβ3 or αvβ5 monoclonal antibody (mAb), phosphatidylinositol 3-kinase (PI3K) inhibitors (Ly294002 and wortmannin) and Akt inhibitor inhibited the CCN3-induced increase of the migration and MMP-13 upregulation of chondrosarcoma cells. CCN3 stimulation increased the phosphorylation of focal adhesion kinase (FAK), PI3K, and Akt. In addition, NF-κB inhibitors also suppressed the cell migration and MMP-13 expression enhanced by CCN3. Moreover, CCN3 increased NF-κB luciferase activity and binding of p65 to the NF-κB element on the MMP-13 promoter. Taken together, our results indicate that CCN3 enhances the migration of chondrosarcoma cells by increasing MMP-13 expression through the αvβ3/αvβ5 integrin receptor, FAK, PI3K, Akt, p65, and NF-κB signal transduction pathway.  相似文献   

19.
Interleukin (IL)‐27 is a member of IL‐6/IL‐12 family cytokines produced by antigen‐presenting cells in immune responses. IL‐27 can drive the commitment of naive T cells to a T helper type 1 (Th1) phenotype and inhibit inflammation in later phases of infection. Human bronchial epithelial cells have been shown to express IL‐27 receptor complex. In this study, we investigated the in vitro effects of IL‐27, alone or in combination with inflammatory cytokine tumor necrosis factor (TNF)‐α on the pro‐inflammatory activation of human primary bronchial epithelial cells and the underlying intracellular signaling mechanisms. IL‐27 was found to enhance intercellular adhesion molecule 1 (ICAM‐1) expression on the surface of human bronchial epithelial cells, and a synergistic effect was observed in the combined treatment of IL‐27 and TNF‐α on the expression of ICAM‐1. Although IL‐27 did not alter the basal IL‐6 secretion from bronchial epithelial cells, it could significantly augment TNF‐α‐induced IL‐6 release. These synergistic effects on the up‐regulation of ICAM‐1 and IL‐6 were partially due to the elevated expression of TNF‐α receptor (p55TNFR) induced by IL‐27. Further investigations showed that the elevation of ICAM‐1 and IL‐6 in human bronchial epithelial cells stimulated by IL‐27 and TNF‐α was differentially regulated by phosphatidylinositol 3‐OH kinase (PI3K)‐Akt, p38 mitogen‐activated protein kinase, and nuclear factor‐κB pathways. Our results therefore provide a new insight into the molecular mechanisms involved in airway inflammation. J. Cell. Physiol. 223:788–797, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Aberrant substance P/neurokinin‐1 receptor (SP/NK‐1R) system activation plays a critical role in various disorders, however, little is known about the expression and the detailed molecular mechanism of the SP and NK‐1R in gallbladder cancer (GBC). In this study, we firstly analyzed the expression and clinical significance of them in patients with GBC. Then, cellular assays were performed to clarify their biological role in GBC cells. Moreover, we investigated the molecular mechanisms regulated by SP/NK‐1R. Meanwhile, mice xenografted with human GBC cells were analyzed regarding the effects of SP/NK1R complex in vivo. Finally, patient samples were utilized to investigate the effect of SP/NK‐1R. The results showed that SP and NK‐1R were highly expressed in GBC. We found that SP strongly induced GBC cell proliferation, clone formation, migration and invasion, whereas antagonizing NK‐1R resulted in the opposite effects. Moreover, SP significantly enhanced the expression of NF‐κB p65 and the tumor‐associated cytokines, while, Akt inhibitor could reverse these effects. Further studies indicated that decreasing activation of NF‐κB or Akt diminished GBC cell proliferation and migration. In consistent with results, immunohistochemical staining showed high levels of Akt, NF‐κB and cytokines in tumor tissues. Most importantly, the similar conclusion was obtained in xenograft mouse model. Our findings demonstrate that NK‐1R, after binding with the endogenous agonist SP, could induce GBC cell migration and spreading via modulation of Akt/NF‐κB pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号