首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Niemann–Pick Type C (NPC) disease is caused by a deficiency of either NPC1 or NPC2. Loss of function of either protein results in the progressive accumulation of unesterified cholesterol in every tissue leading to cell death and organ damage. Most literature on NPC disease focuses on neurological and liver manifestations. Pulmonary dysfunction is less well described. The present studies investigated how Npc1 deficiency impacts the absolute weight, lipid composition and histology of the lungs of Npc1−/− mice (Npc1nih) at different stages of the disease, and also quantitated changes in the rates of cholesterol and fatty acid synthesis in the lung over this same time span (8 to 70 days of age). Similar measurements were made in Npc2−/− mice at 70 days. All mice were of the BALB/c strain and were fed a basal rodent chow diet. Well before weaning, the lung weight, cholesterol and phospholipid (PL) content, and cholesterol synthesis rate were all elevated in the Npc1−/− mice and remained so at 70 days of age. In contrast, lung triacylglycerol content was reduced while there was no change in lung fatty acid synthesis. Despite the elevated PL content, the composition of PL in the lungs of the Npc1−/− mice was unchanged. H&E staining revealed an age-related increase in the presence of lipid-laden macrophages in the alveoli of the lungs of the Npc1−/− mice starting as early as 28 days. Similar metabolic and histologic changes were evident in the lungs of the Npc2−/− mice. Together these findings demonstrate an intrinsic lung pathology in NPC disease that is of early onset and worsens over time.  相似文献   

4.
Enhanced susceptibility to atherosclerosis from severe hypertriglyceridemia (HTG) resulting from lipoprotein lipase (LPL) deficiency has been demonstrated in our recent findings which employed a unique mouse model. In the present study we provide further evidence that severe HTG due to LPL deficiency also promotes an atherothrombotic response to arterial injury induced by ferric chloride in a severe combined hyperlipidemic mouse model. Methods and results: A mouse model (LPL−/−XApoE−/− double knockout, DKO) with severe combined hyperlipidemia was established by crossing ApoE and LPL-deficient mice. The common carotid arteries of ApoE knockout (EKO) and DKO mice were subjected to injury by ferric chloride, and the formation of arterial thrombosis together with various markers were compared in these lesions. DKO mice demonstrated significantly enhanced thrombus formation overlying atherosclerotic plaque after injury, which contained smooth muscle cells, macrophages, and neutral lipid. The area of neointima, mean intima/media ratios, and the percentage of luminal stenosis were significantly greater (P < 0.01) in DKO mice. Compared with EKO mice, the expression of von Willebrand factor (vWF) and plasminogen activator inhibitor type 1 (PAI-1) were increased in DKO mice. Conclusions: Severe combined hyperlipidemia promotes thrombosis after ferric chloride injury to atherosclerotic vessels and HTG plays a major role in the process.  相似文献   

5.
This study examined the effect of prostaglandin E2 (PGE2) produced by microsomal prostaglandin E synthase-1 (mPGES-1) on circadian rhythm. Using wild-type mice (WT) and mPGES-1 knockout mice (mPGES-1−/−), I recorded and automatically analyzed the natural behavior of mice in home cages for 24 h and measured brain levels of PGE2. The switch to wakefulness was not smooth, and sleepiness and the total duration of sleep were significantly longer in the mPGES-1−/− mice. Moreover, the basal concentration of PGE2 was significantly lower in the mPGES-1−/− mice. These findings suggest that PGE2 produced by mPGES-1 regulates the onset of wakefulness and the maintenance of circadian rhythm.  相似文献   

6.
In this study we examined the role of the antioxidant glutathione (GSH) in pulmonary susceptibility to ozone toxicity, utilizing GSH deficient C57BL/6J mice that lack the expression of glutamate-cysteine ligase modifier subunit (GCLM). Gclm(−/−) knockout mice had 70% GSH depletion in the lung. Gclm(+/+) wild-type and Gclm(−/−) mice were exposed to either 0.3 ppm ozone or filtered air for 48 h. Ozone-induced lung hyperpermeability, as measured by total protein concentration in bronchoalveolar lavage fluid, was surprisingly lower in Gclm(−/−) mice than in wild-type mice. Lung hyperpermeability did not correlate with the degree of neutrophilia or with inflammatory gene expression. Pulmonary antioxidant response to ozone, assessed by increased mRNA levels of metallothionein 1 and 2, α-tocopherol transporter protein, and solute carrier family 23 member 2 (sodium-dependent vitamin C transporter) was greater in Gclm(−/−) mice than in Gclm(+/+) mice. These results suggest that compensatory augmentation of antioxidant defenses in Gclm(−/−) mice may confer increased resistance to ozone-induced lung injury.  相似文献   

7.
Caveolin-1 (Cav-1) is a major structural protein in caveolae in the plasma membranes of many cell types, particularly endothelial cells and adipocytes. Loss of Cav-1 function has been implicated in multiple diseases affecting the cardiopulmonary and central nervous systems, as well as in specific aspects of sterol and lipid metabolism in the liver and intestine. Lungs contain an exceptionally high level of Cav-1. Parameters of cholesterol metabolism in the lung were measured, initially in Cav-1-deficient mice (Cav-1−/−), and subsequently in Cav-1−/− mice that also lacked the lysosomal cholesterol transporter Niemann–Pick C1 (Npc1) (Cav-1−/−:Npc1−/−). In 50-day-old Cav-1−/− mice fed a low- or high-cholesterol chow diet, the total cholesterol concentration (mg/g) in the lungs was marginally lower than in the Cav-1+/+ controls, but due to an expansion in their lung mass exceeding 30%, whole-lung cholesterol content (mg/organ) was moderately elevated. Lung mass (g) in the Cav-1−/−:Npc1−/− mice (0.356 ± 0.022) markedly exceeded that in their Cav-1+/+:Npc1+/+ controls (0.137 ± 0.009), as well as in their Cav-1−/−:Npc1+/+ (0.191 ± 0.013) and Cav-1+/+:Npc1−/− (0.213 ± 0.022) littermates. The corresponding lung total cholesterol contents (mg/organ) in mice of these genotypes were 6.74 ± 0.17, 0.71 ± 0.05, 0.96 ± 0.05 and 3.12 ± 0.43, respectively, with the extra cholesterol in the Cav-1−/−:Npc1−/− and Cav-1+/+:Npc1−/− mice being nearly all unesterified (UC). The exacerbation of the Npc1 lung phenotype and increase in the UC level in the Cav-1−/−:Npc1−/− mice imply a regulatory role of Cav-1 in pulmonary cholesterol metabolism when lysosomal sterol transport is disrupted.  相似文献   

8.
CD14 deficient (CD14−/−) mice survived longer than wild-type (WT) C57BL/6J mice when inoculated with prions intracerebrally, accompanied by increased expression of anti-inflammatory cytokine IL-10 by microglia in the early stage of infection. To assess the immune regulatory effects of CD14 in detail, we compared the gene expression of pro- and anti-inflammatory cytokines in the brains of WT and CD14−/− mice infected with the Chandler strain. Gene expression of the anti-inflammatory cytokine IL-13 in prion-infected CD14−/− mice was temporarily upregulated at 75 dpi, whereas IL-13 gene expression was not upregulated in prion-infected WT mice. Immunofluorescence staining showed that IL-13 was mainly expressed in neurons of the thalamus at 75 dpi. These results suggest that CD14 can suppress IL-13 expression in neurons during the early stage of prion infection.  相似文献   

9.
Small GTPase Rap1 has been implicated in the proper differentiation of testicular germ cells. In the present study, we investigated the functional significance of RA-GEF-2/Rapgef6, a guanine nucleotide exchange factor for Rap1, in testicular differentiation using mice lacking RA-GEF-2. RA-GEF-2 was expressed predominantly on the luminal side of the seminiferous tubules in wild-type mice. No significant differences were observed in the body weights or hormonal parameters of RA-GEF-2/ and wild-type mice. However, the testes of RA-GEF-2/ male mice were significantly smaller than those of wild-type mice and were markedly atrophied as well as hypospermatogenic. The concentration and motility of epididymal sperm were also markedly reduced and frequently had an abnormal shape. The pregnancy rate and number of fetuses were markedly lower in wild-type females after they mated with RA-GEF-2/ males than with wild-type males, which demonstrated the male infertility phenotype of RA-GEF-2/ mice. Furthermore, a significant reduction and alteration were observed in the expression level and cell junctional localization of N-cadherin, respectively, in RA-GEF-2/ testes, which may, at least in part, account for the defects in testicular differentiation and spermatogenesis in these mice.  相似文献   

10.
RGS2 (regulator of G protein signaling 2) is known to limit signals mediated via Gq- and Gs-coupled GPCRs (G protein coupled receptors), and it has been implicated in the differentiation of several cells types. The physiology of RGS2 knockout mice (rgs2−/−) has been studied in some detail, however, a metabolic phenotype has not previously been reported. We observed that old (21-24 month) rgs2−/− mice weigh much less than wild-type C57BL/6 controls, and exhibit greatly reduced fat deposits, decreased serum lipids, and low leptin levels. Lower weight was evident as early as four weeks and continued throughout life. Younger adult male rgs2−/− mice (4-8 months) were found to show similar strain-related differences as the aged animals, as well improved glucose clearance and insulin sensitivity, and enhanced beta-adrenergic and glucagon signaling in isolated hepatocytes. In addition, rgs2−/− pre-adipocytes had reduced levels of differentiation markers (Peroxisome proliferator-activated receptor γ (PPARγ); lipoprotein lipase (Lpl); CCAAT/enhancer binding protein α (CEBPα)) and also rgs2−/− white adipocytes were small relative to controls, suggesting altered adipogenesis. In wild-type animals, RGS2 mRNA was decreased in brown adipose tissue after cold exposure (7 h at 4 °C) but increased in white adipose tissue in response to a high fat diet, also suggesting a role in lipid storage. No differences between strains were detected with respect to food intake, energy expenditure, GPCR-stimulated lipolysis, or adaptive thermogenesis. In conclusion this study points to RGS2 as being an important regulatory factor in controlling body weight and adipose function.  相似文献   

11.
Retinal ischemia-reperfusion (I/R) involves an extensive increase in reactive oxygen species as well as proinflammatory changes that result in significant histopathologic damage, including neuronal and vascular degeneration. Nrf2 has a well-known cytoprotective role in many tissues, but its protective function in the retina is unclear. We investigated the possible role of Nrf2 as a protective mechanism in retinal ischemia-reperfusion injury using Nrf2−/− mice. I/R resulted in an increase in retinal levels of superoxide and proinflammatory mediators, as well as leukocyte infiltration of the retina and vitreous, in Nrf2+/+ mice. These effects were greatly accentuated in Nrf2−/− mice. With regard to histopathologic damage, Nrf2−/− mice exhibited loss of cells in the ganglion cell layer and markedly accentuated retinal capillary degeneration, as compared to wild-type. Treatment with the Nrf2 activator CDDO-Me increased antioxidant gene expression and normalized I/R-induced superoxide in the retina in wild-type but not Nrf2−/− mice. CDDO-Me treatment abrogated retinal capillary degeneration induced by I/R in wild-type but not Nrf2−/− mice. These studies indicate that Nrf2 is an important cytoprotective mechanism in the retina in response to ischemia-reperfusion injury and suggest that pharmacologic induction of Nrf2 could be a new therapeutic strategy for retinal ischemia-reperfusion and other retinal diseases.  相似文献   

12.
An earlier study revealed that 4-day-old mice, but not older mice, were infected with invasive Shigella strains. Here we attempted to determine the underlying mechanism that induces inflammation in the intestines of neonate mice after oral Shigella infection. Wild-type BALB/c mice of different ages (7, 14, and 35 days old) were orally administered GFP-expressing Shigella flexneri 5a M90T strain (5 × 109 CFU) and analyzed for colonization 6 h following infection. We found that Shigella localized in the epithelium, lamina propria, and crypt regions of the small intestines of 7-day-old BALB/c mice. Microarray analysis revealed that expression levels of cryptdin and various types of cryptdin-related mRNA (e.g., cryptrs-2, -5, -7, -12 and lysozyme) in the small intestines were significantly lower in 7-day-old than in older mice regardless of Shigella infection status. Interestingly, matrix metalloprotease-7 (matrilysin)-deficient (MAT−/−) mice of B6 background had more colonies and more severe symptoms of inflammation in the intestines than did wild-type B6 mice after oral Shigella challenge. This suggests that cryptdin-related antimicrobial molecules are indispensable for efficient protection against oral Shigella infection.  相似文献   

13.
Disruption of the Pex2 gene leads to peroxisome deficiency and widespread metabolic dysfunction. We previously demonstrated that peroxisomes are critical for maintaining cholesterol homeostasis, using peroxisome-deficient Pex2−/− mice on a hybrid Swiss Webster × 129S6/SvEv (SW/129) genetic background. Peroxisome deficiency activates hepatic endoplasmic reticulum (ER) stress pathways, leading to dysregulation of the endogenous sterol response mechanism. Herein, we demonstrate a more profound dysregulation of cholesterol homeostasis in newborn Pex2−/− mice congenic on a 129S6/SvEv (129) genetic background, and substantial differences between newborn versus postnatal Pex2−/− mice in factors that activate ER stress. These differences extend to relationships between activation of genes regulated by SREBP-2 versus PPARα. The SREBP-2 pathway is induced in neonatal Pex2−/− livers from 129 and SW/129 strains, despite normal hepatic cholesterol levels. ER stress markers are increased in newborn 129 Pex2−/− livers, which occurs in the absence of hepatic steatosis or accumulation of peroxins in the ER. Moreover, the induction of SREBP-2 and ER stress pathways is independent of PPARα activation in livers of newborn 129 and SW/129 Pex2−/− mice. Two-week-old wild-type mice treated with the peroxisome proliferator WY-14,643 show strong induction of PPARα-regulated genes and decreased expression of SREBP-2 and its target genes, further demonstrating that SREBP-2 pathway induction is not dependent on PPARα activation. Lastly, there is no activation of either SREBP-2 or ER stress pathways in kidney and lung of newborn Pex2−/− mice, suggesting a parallel induction of these pathways in peroxisome-deficient mice. These findings establish novel associations between SREBP-2, ER stress and PPARα pathway inductions.  相似文献   

14.
15.
In mice with temporally-induced cardiac-specific deficiency of acyl-CoA synthetase-1 (Acsl1H −/−), the heart is unable to oxidize long-chain fatty acids and relies primarily on glucose for energy. These metabolic changes result in the development of both a spontaneous cardiac hypertrophy and increased phosphorylated S6 kinase (S6K), a substrate of the mechanistic target of rapamycin, mTOR. Doppler echocardiography revealed evidence of significant diastolic dysfunction, indicated by a reduced E/A ratio and increased mean performance index, although the deceleration time and the expression of sarco/endoplasmic reticulum calcium ATPase and phospholamban showed no difference between genotypes. To determine the role of mTOR in the development of cardiac hypertrophy, we treated Acsl1H −/− mice with rapamycin. Six to eight week old Acsl1H −/− mice and their littermate controls were given i.p. tamoxifen to eliminate cardiac Acsl1, then concomitantly treated for 10 weeks with i.p. rapamycin or vehicle alone. Rapamycin completely blocked the enhanced ventricular S6K phosphorylation and cardiac hypertrophy and attenuated the expression of hypertrophy-associated fetal genes, including α-skeletal actin and B-type natriuretic peptide. mTOR activation of the related Acsl3 gene, usually associated with pathologic hypertrophy, was also attenuated in the Acsl1H −/− hearts, indicating that alternative pathways of fatty acid activation did not compensate for the loss of Acsl1. Compared to controls, Acsl1H −/− hearts exhibited an 8-fold higher uptake of 2-deoxy[1-14C]glucose and a 35% lower uptake of the fatty acid analog 2-bromo[1-14C]palmitate. These data indicate that Acsl1-deficiency causes diastolic dysfunction and that mTOR activation is linked to the development of cardiac hypertrophy in Acsl1H −/− mice.  相似文献   

16.

Objective

Angiotensin-(1-7) [ANG-(1-7)] has been reported to attenuate neointimal formation after vascular injury and stent implantation in rats, but the mechanism remains mostly unresolved. Interestingly, the levels of circulating transforming growth factor-beta1 (TGF-β1) after myocardial infarction were suppressed by ANG-(1-7), which suggests a possible downstream target for the anti-remodeling action of ANG-(1-7). Our study focused on the effects of ANG-(1-7) on vascular remodeling, including neointimal formation and collagen synthesis, and determining whether or not these effects were dependent upon the TGF-β signaling pathway.

Methods

Thirty-two New Zealand white rabbits underwent sham surgery or angioplasty in abdominal aorta. The animals were divided into four groups, which were sham, control, ANG-(1-7), and ANG-(1-7) + A-779. Subsequently, an osmotic minipump was implanted to deliver saline, ANG-(1-7) (576 μg kg−1 d−1) or ANG-(1-7) + A-779 (576 μg kg−1 d−1) for 4 weeks.

Results

The ANG-(1-7) group displayed a significant reduction in neointimal thickness (207.51 ± 16.70 μm vs. 448.08 ± 15.30 μm, P < 0.001), neointimal area (0.266 ± 0.009 mm2 vs. 0.408 ± 0.002 mm2, P < 0.001), and restenosis rate (28.13 ± 2.74% vs. 40.13 ± 2.74%, P < 0.001) when compared to the control group. ANG-(1-7) also inhibited collagen synthesis by significantly decreasing the mRNA expression of Collagen I and Collagen III (vs. Control group: 0.2190 ± 0.0036 vs. 0.3852 ± 0.0212, P < 0.001 and 1.1328 ± 0.0554 vs. 1.7378 ± 0.1164, P < 0.001, respectively). Furthermore, the expression of TGF-β1 and phosphor-Smad2 (p-Smad2) were significantly suppressed by ANG-(1-7) (vs. Control group: 1.21 ± 0.07 vs. 1.54 ± 0.08, P < 0.001 and 0.31 ± 0.01 vs. 0.43 ± 0.02, P < 0.001, respectively), but no effect on p38 phosphorylation was observed. [d-Ala7]-ANG-(1-7) (A-779), showed a tendency to attenuate the anti-remodeling effects of ANG-(1-7).

Conclusion

ANG-(1-7) decreases the amount of vascular remodeling, including a reduction in neointimal formation and collagen synthesis, after angioplasty in rabbits. The responsible mechanism may function through the possible down-regulation of TGF-β1 levels and inhibition of the Smad2 pathway.  相似文献   

17.
Sterol O-acyltransferase 2 (SOAT2), also known as ACAT2, is the major cholesterol esterifying enzyme in the liver and small intestine (SI). Esterified cholesterol (EC) carried in certain classes of plasma lipoproteins is hydrolyzed by lysosomal acid lipase (LAL) when they are cleared from the circulation. Loss-of-function mutations in LIPA, the gene that encodes LAL, result in Wolman disease (WD) or cholesteryl ester storage disease (CESD). Hepatomegaly and a massive increase in tissue EC levels are hallmark features of both disorders. While these conditions can be corrected with enzyme replacement therapy, the question arose as to what effect the loss of SOAT2 function might have on tissue EC sequestration in LAL-deficient mice. When weaned at 21 days, Lal/:Soat2+/+ mice had a whole liver cholesterol content (mg/organ) of 24.7 mg vs 1.9 mg in Lal+/+:Soat2+/+ littermates, with almost all the excess sterol being esterified. Over the next 31 days, liver cholesterol content in the Lal/:Soat2+/+ mice increased to 145 ± 2 mg but to only 29 ± 2 mg in their Lal/:Soat2/ littermates. The level of EC accumulation in the SI of the Lal/:Soat2/ mice was also much less than in their Lal/:Soat2+/+ littermates. In addition, there was a >70% reduction in plasma transaminase activities in the Lal/:Soat2/ mice. These studies illustrate how the severity of disease in a mouse model for CESD can be substantially ameliorated by elimination of SOAT2 function.  相似文献   

18.

Aims/hypothesis

Changes in cellular cholesterol level may contribute to beta cell dysfunction. Islets from low density lipoprotein receptor knockout (LDLR−/−) mice have higher cholesterol content and secrete less insulin than wild-type (WT) mice. Here, we investigated the association between cholesterol content, insulin secretion and Ca2 + handling in these islets.

Methods

Isolated islets from both LDLR−/− and WT mice were used for measurements of insulin secretion (radioimmunoassay), cholesterol content (fluorimetric assay), cytosolic Ca2 + level (fura-2AM) and SNARE protein expression (VAMP-2, SNAP-25 and syntaxin-1A). Cholesterol was depleted by incubating the islets with increasing concentrations (0–10 mmol/l) of methyl-beta-cyclodextrin (MβCD).

Results

The first and second phases of glucose-stimulated insulin secretion (GSIS) were lower in LDLR−/− than in WT islets, paralleled by an impairment of Ca2 + handling in the former. SNAP-25 and VAMP-2, but not syntaxin-1A, were reduced in LDLR−/− compared with WT islets. Removal of excess cholesterol from LDLR−/− islets normalized glucose- and tolbutamide-induced insulin release. Glucose-stimulated Ca2 + handling was also normalized in cholesterol-depleted LDLR−/− islets. Cholesterol removal from WT islets by 0.1 and 1.0 mmol/l MβCD impaired both GSIS and Ca2 + handling. In addition, at 10 mmol/l MβCD WT islet showed a loss of membrane integrity and higher DNA fragmentation.

Conclusion

Abnormally high (LDLR−/− islets) or low cholesterol content (WT islets treated with MβCD) alters both GSIS and Ca2 + handling. Normalization of cholesterol improves Ca2 + handling and insulin secretion in LDLR−/− islets.  相似文献   

19.
The farnesoid X receptor (FXR) has been suggested to play a role in gluconeogenesis. To determine whether FXR modulates the response to fasting in vivo, FXR-deficient (FXR−/−) and wild-type mice were submitted to fasting for 48 h. Our results demonstrate that FXR modulates the kinetics of alterations of glucose homeostasis during fasting, with FXR−/− mice displaying an early, accelerated hypoglycaemia response. Basal hepatic glucose production rate was lower in FXR−/− mice, together with a decrease in hepatic glycogen content. Moreover, hepatic PEPCK gene expression was transiently lower in FXR−/−mice after 6 h of fasting and was decreased in FXR−/−hepatocytes. FXR therefore plays an unexpected role in the control of fuel availability upon fasting.  相似文献   

20.
TNFα, a mediator of hepatotoxicity in several animal models, is elevated in acute and chronic liver diseases. Therefore, we investigated whether hepatic injury and fibrosis due to bile duct ligation (BDL) would be reduced in TNFα knockout mice (TNFα−/−). Survival after BDL was 60% in wild-type mice (TNFα+/+) and 90% in TNFα−/− mice. Body weight loss and liver to body weight ratios were reduced in TNFα−/− mice compared to TNFα+/+ mice. Following BDL, serum alanine transaminases (ALT) levels were elevated in TNFα+/+ mice (268.6 ± 28.2 U/L) compared to TNFα−/− mice (105.9 U/L ± 24.4). TNFα−/− mice revealed lower hepatic collagen expression and less liver fibrosis in the histology. Further, α-smooth muscle actin, an indicator for activated myofibroblasts, and TGF-β mRNA, a profibrogenic cytokine, were markedly reduced in TNFα−/− mice compared to TNFα+/+ mice. Thus, our data indicate that TNFα induces hepatotoxicity and promotes fibrogenesis in the BDL model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号